A variational Bayesian method for similarity learning in non-rigid image registration

Daniel Grzech, Mohammad Farid Azampour, Ben Glocker, Julia Schnabel, Nassir Navab, Bernhard Kainz, Loic Le Folgoc

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

We propose a novel variational Bayesian formulation for diffeomorphic non-rigid registration of medical images, which learns in an unsupervised way a data-specific similarity metric. The proposed framework is general and may be used together with many existing image registration models. We evaluate it on brain MRI scans from the UK Biobank and show that use of the learnt similarity metric, which is parametrised as a neural network, leads to more accurate results than use of traditional functions, e.g. SSD and LCC, to which we initialise the model, without a negative impact on image registration speed or transformation smoothness. In addition, the method estimates the uncertainty associated with the transformation. The code and the trained models are available in a public repository: https://github.com/dgrzech/learnsim.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages119-128
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Keywords

  • Machine learning
  • Self-& semi-& meta- & unsupervised learning

Fingerprint

Dive into the research topics of 'A variational Bayesian method for similarity learning in non-rigid image registration'. Together they form a unique fingerprint.

Cite this