TY - GEN
T1 - A technical framework for human-like motion generation with autonomous anthropomorphic redundant manipulators
AU - Averta, Giuseppe
AU - Caporale, Danilo
AU - Santina, Cosimo Della
AU - Bicchi, Antonio
AU - Bianchi, Matteo
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/5
Y1 - 2020/5
N2 - The need for users' safety and technology accept-ability has incredibly increased with the deployment of co-bots physically interacting with humans in industrial settings, and for people assistance. A well-studied approach to meet these requirements is to ensure human-like robot motions. Classic solutions for anthropomorphic movement generation usually rely on optimization procedures, which build upon hypotheses devised from neuroscientific literature, or capitalize on learning methods. However, these approaches come with limitations, e.g. limited motion variability or the need for high dimensional datasets. In this work, we present a technique to directly embed human upper limb principal motion modes computed through functional analysis in the robot trajectory optimization. We report on the implementation with manipulators with redundant anthropomorphic kinematic architectures - although dissimilar with respect to the human model used for functional mode extraction - via Cartesian impedance control. In our experiments, we show how human trajectories mapped onto a robotic manipulator still exhibit the main characteristics of human-likeness, e.g. low jerk values. We discuss the results with respect to the state of the art, and their implications for advanced human-robot interaction in industrial co-botics and for human assistance.
AB - The need for users' safety and technology accept-ability has incredibly increased with the deployment of co-bots physically interacting with humans in industrial settings, and for people assistance. A well-studied approach to meet these requirements is to ensure human-like robot motions. Classic solutions for anthropomorphic movement generation usually rely on optimization procedures, which build upon hypotheses devised from neuroscientific literature, or capitalize on learning methods. However, these approaches come with limitations, e.g. limited motion variability or the need for high dimensional datasets. In this work, we present a technique to directly embed human upper limb principal motion modes computed through functional analysis in the robot trajectory optimization. We report on the implementation with manipulators with redundant anthropomorphic kinematic architectures - although dissimilar with respect to the human model used for functional mode extraction - via Cartesian impedance control. In our experiments, we show how human trajectories mapped onto a robotic manipulator still exhibit the main characteristics of human-likeness, e.g. low jerk values. We discuss the results with respect to the state of the art, and their implications for advanced human-robot interaction in industrial co-botics and for human assistance.
UR - http://www.scopus.com/inward/record.url?scp=85085062361&partnerID=8YFLogxK
U2 - 10.1109/ICRA40945.2020.9196937
DO - 10.1109/ICRA40945.2020.9196937
M3 - Conference contribution
AN - SCOPUS:85085062361
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 3853
EP - 3859
BT - 2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Y2 - 31 May 2020 through 31 August 2020
ER -