A Tactile Lightweight Exoskeleton for Teleoperation: Design and Control Performance

Moein Forouhar, Hamid Sadeghian, Daniel Perez Suay, Abdeldjallil Naceri, Sami Haddadin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this work, an upgraded exoskeleton design is presented with enhanced trajectory tracking and mechanical transparency. Compared to the first version, the design features a 3-DoF actuated shoulder joint and a mechanism to regulate the pretension of Bowden cables. Force/torque sensors are installed to directly measure the interaction forces between the human arm and the exoskeleton at the connecting points. Three control strategies were evaluated to follow a desired trajectory; A PD controller, a PD controller with friction observer, and an adaptive controller based on Radial Basis Function (RBF). These strategies also form the basis for an admittance control, aimed at improving the exoskeleton's mechanical transparency during interaction with the human arm. Simulations and experimental results demonstrate that the PD control, supported by friction estimation via a momentum observer, achieves superior tracking performance. Moreover, the system's mechanical transparency is enhanced using the admittance RBF-based controller, showing marginally superior results.

Original languageEnglish
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages178-183
Number of pages6
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: 14 Oct 202418 Oct 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period14/10/2418/10/24

Fingerprint

Dive into the research topics of 'A Tactile Lightweight Exoskeleton for Teleoperation: Design and Control Performance'. Together they form a unique fingerprint.

Cite this