TY - GEN
T1 - A Steiner tree-based verification approach for handling topology changes in self-organizing networks
AU - Tsvetkov, Tsvetko
AU - Ali-Tolppa, Janne
AU - Sanneck, Henning
AU - Carle, Georg
N1 - Publisher Copyright:
© 2016 IFIP.
PY - 2017/1/13
Y1 - 2017/1/13
N2 - In today's Self-Organizing Networks (SONs) we differentiate between closed-loop functions, which have a predefined absolute goal, and such that form an action plan that achieves a high expected utility. Both function types perform changes to Configuration Management (CM) parameters, but only the second type may re-adapt the action plan in order to maximize the utility. A SON verification approach is one member of this particular function class. It is seen as a special type of anomaly detection that divides the network into sets of cells, triggers an anomaly detection algorithm for those sets, and finally generates CM undo actions for the abnormally performing cells. Unfortunately, one of the challenges verification strategies are facing are network topology changes. Typically, cells are switched on or off when energy saving features are enabled. However, enabling or disabling cells can negatively influence a verification mechanism which may create a suboptimal action plan or even blame certain CM changes that actually did not harm performance. In order to overcome this issue, we present an approach that is based on Steiner trees. In graph theory, a Steiner tree is a Minimum Spanning Tree (MST) whose costs can be reduced by adding additional vertexes to the graph. We use this tree to filter out anomalies caused by topology adjustments and such induced by other CM changes. In this paper, we also evaluate the proposed solution in several scenarios. First, in a simulation study we evaluate the functions that are used to build the Steiner tree. Second, we show how it positively affects the network performance when having concurrent CM and topology changes.
AB - In today's Self-Organizing Networks (SONs) we differentiate between closed-loop functions, which have a predefined absolute goal, and such that form an action plan that achieves a high expected utility. Both function types perform changes to Configuration Management (CM) parameters, but only the second type may re-adapt the action plan in order to maximize the utility. A SON verification approach is one member of this particular function class. It is seen as a special type of anomaly detection that divides the network into sets of cells, triggers an anomaly detection algorithm for those sets, and finally generates CM undo actions for the abnormally performing cells. Unfortunately, one of the challenges verification strategies are facing are network topology changes. Typically, cells are switched on or off when energy saving features are enabled. However, enabling or disabling cells can negatively influence a verification mechanism which may create a suboptimal action plan or even blame certain CM changes that actually did not harm performance. In order to overcome this issue, we present an approach that is based on Steiner trees. In graph theory, a Steiner tree is a Minimum Spanning Tree (MST) whose costs can be reduced by adding additional vertexes to the graph. We use this tree to filter out anomalies caused by topology adjustments and such induced by other CM changes. In this paper, we also evaluate the proposed solution in several scenarios. First, in a simulation study we evaluate the functions that are used to build the Steiner tree. Second, we show how it positively affects the network performance when having concurrent CM and topology changes.
UR - http://www.scopus.com/inward/record.url?scp=85013660611&partnerID=8YFLogxK
U2 - 10.1109/CNSM.2016.7818399
DO - 10.1109/CNSM.2016.7818399
M3 - Conference contribution
AN - SCOPUS:85013660611
T3 - 2016 12th International Conference on Network and Service Management, CNSM 2016 and Workshops, 3rd International Workshop on Management of SDN and NFV, ManSDN/NFV 2016, and International Workshop on Green ICT and Smart Networking, GISN 2016
SP - 46
EP - 54
BT - 2016 12th International Conference on Network and Service Management, CNSM 2016 and Workshops, 3rd International Workshop on Management of SDN and NFV, ManSDN/NFV 2016, and International Workshop on Green ICT and Smart Networking, GISN 2016
A2 - Keith-Marsoun, Shannon
A2 - dos Santos, Carlos Raniery Paula
A2 - Limam, Noura
A2 - Cheriet, Mohamed
A2 - Zhani, Mohamed Faten
A2 - Festor, Olivier
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 12th International Conference on Network and Service Management, CNSM 2016 and Workshops, 3rd International Workshop on Management of SDN and NFV, ManSDN/NFV 2016 and International Workshop on Green ICT and Smart Networking, GISN 2016
Y2 - 31 October 2016 through 4 November 2016
ER -