TY - GEN
T1 - A staircase structure for scalable and efficient synthesis of memristor-aided logic
AU - Zulehner, Alwin
AU - Datta, Kamalika
AU - Sengupta, Indranil
AU - Wille, Robert
N1 - Publisher Copyright:
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
PY - 2019/1/21
Y1 - 2019/1/21
N2 - The identification of the memristor as fourth fundamental circuit element and, eventually, its fabrication in the HP labs provide new capabilities for in-memory computing. While there already exist sophisticated methods for realizing logic gates with memristors, mapping them to crossbar structures (which can easily be fabricated) still constitutes a challenging task. This is particularly the case since several (complementary) design objectives have to be satisfied, e.g. the design method has to be scalable, should yield designs requiring a low number of timesteps and utilized memristors, and a layout should result that is hardly skewed. However, all solutions proposed thus far only focus on one of these objectives and hardly address the other ones. Consequently, rather imperfect solutions are generated by state-of-the-art design methods for memristor-aided logic thus far. In this work, we propose a corresponding automatic design solution which addresses all these design objectives at once. To this end, a staircase structure is utilized which employs an almost square-like layout and remains perfectly scalable while, at the same time, keeps the number of timesteps and utilized memristors close to the minimum. Experimental evaluations confirm that the proposed approach indeed allows to satisfy all design objectives at once.
AB - The identification of the memristor as fourth fundamental circuit element and, eventually, its fabrication in the HP labs provide new capabilities for in-memory computing. While there already exist sophisticated methods for realizing logic gates with memristors, mapping them to crossbar structures (which can easily be fabricated) still constitutes a challenging task. This is particularly the case since several (complementary) design objectives have to be satisfied, e.g. the design method has to be scalable, should yield designs requiring a low number of timesteps and utilized memristors, and a layout should result that is hardly skewed. However, all solutions proposed thus far only focus on one of these objectives and hardly address the other ones. Consequently, rather imperfect solutions are generated by state-of-the-art design methods for memristor-aided logic thus far. In this work, we propose a corresponding automatic design solution which addresses all these design objectives at once. To this end, a staircase structure is utilized which employs an almost square-like layout and remains perfectly scalable while, at the same time, keeps the number of timesteps and utilized memristors close to the minimum. Experimental evaluations confirm that the proposed approach indeed allows to satisfy all design objectives at once.
UR - http://www.scopus.com/inward/record.url?scp=85061147039&partnerID=8YFLogxK
U2 - 10.1145/3287624.3287672
DO - 10.1145/3287624.3287672
M3 - Conference contribution
AN - SCOPUS:85061147039
T3 - Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC
SP - 237
EP - 242
BT - ASP-DAC 2019 - 24th Asia and South Pacific Design Automation Conference
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 24th Asia and South Pacific Design Automation Conference, ASPDAC 2019
Y2 - 21 January 2019 through 24 January 2019
ER -