A Stable Adaptive Extended Kalman Filter for Estimating Robot Manipulators Link Velocity and Acceleration

Seyed Ali Baradaran Birjandi, Harshit Khurana, Aude Billard, Sami Haddadin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

One can estimate the velocity and acceleration of robot manipulators by utilizing nonlinear observers. This involves combining inertial measurement units (IMUs) with the motor encoders of the robot through a model-based sensor fusion technique. This approach is lightweight, versatile (suitable for a wide range of trajectories and applications), and straightforward to implement. In order to further improve the estimation accuracy while running the system, we propose to adapt the noise information in this paper. This would automatically reduce the system vulnerability to imperfect modelings and sensor changes. Moreover, viable strategies to maintain the system stability are introduced. Finally, we thoroughly evaluate the overall framework with a seven DoF robot manipulator whose links are equipped with IMUs.

Original languageEnglish
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages346-353
Number of pages8
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: 1 Oct 20235 Oct 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'A Stable Adaptive Extended Kalman Filter for Estimating Robot Manipulators Link Velocity and Acceleration'. Together they form a unique fingerprint.

Cite this