TY - JOUR
T1 - A semi-analytical approach to wire arc additive manufacturing simulation for deposition sequence optimisation
AU - Zhao, Xiao Fan
AU - Zapata, Avelino
AU - Zaeh, Michael F.
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - Categorised as a directed energy deposition process, wire arc additive manufacturing (WAAM) is a promising technology for fabricating large-scale structures and components across various industries. However, the quality of WAAM parts depends on the tool trajectory, as it affects the temperature distribution. Ideally, temperature-related issues, such as overheating, are minimised by choosing an optimal deposition sequence. Selecting the deposition sequence solely on intuition is an unreliable approach, particularly when dealing with complex and irregular parts. This paper introduces a simplified WAAM simulation (SWS) model, which was embedded into an optimisation procedure for determining the optimal deposition sequence of thin-walled WAAM parts. The proposed method is based on a semi-analytical function, which was calibrated and validated using thermal histories obtained from finite element simulations. The findings showed that the proposed SWS model can reproduce the average thermal history at predefined positions within a sample part with minimal computational effort. Moreover, the optimisation successfully identified optimal deposition sequences for producing the sample part regarding a given optimisation criterion. The outcomes of this research contribute to the tool trajectory planning process for WAAM parts. An optimal deposition sequence improves WAAM part quality, increasing the usability of WAAM technology in the production industry.
AB - Categorised as a directed energy deposition process, wire arc additive manufacturing (WAAM) is a promising technology for fabricating large-scale structures and components across various industries. However, the quality of WAAM parts depends on the tool trajectory, as it affects the temperature distribution. Ideally, temperature-related issues, such as overheating, are minimised by choosing an optimal deposition sequence. Selecting the deposition sequence solely on intuition is an unreliable approach, particularly when dealing with complex and irregular parts. This paper introduces a simplified WAAM simulation (SWS) model, which was embedded into an optimisation procedure for determining the optimal deposition sequence of thin-walled WAAM parts. The proposed method is based on a semi-analytical function, which was calibrated and validated using thermal histories obtained from finite element simulations. The findings showed that the proposed SWS model can reproduce the average thermal history at predefined positions within a sample part with minimal computational effort. Moreover, the optimisation successfully identified optimal deposition sequences for producing the sample part regarding a given optimisation criterion. The outcomes of this research contribute to the tool trajectory planning process for WAAM parts. An optimal deposition sequence improves WAAM part quality, increasing the usability of WAAM technology in the production industry.
KW - Directed energy deposition
KW - deposition sequence
KW - model simplification
KW - optimisation
KW - thermal simulation
KW - tool trajectory
UR - http://www.scopus.com/inward/record.url?scp=85197702294&partnerID=8YFLogxK
U2 - 10.1080/17452759.2024.2368648
DO - 10.1080/17452759.2024.2368648
M3 - Article
AN - SCOPUS:85197702294
SN - 1745-2759
VL - 19
JO - Virtual and Physical Prototyping
JF - Virtual and Physical Prototyping
IS - 1
M1 - e2368648
ER -