TY - JOUR
T1 - A review on automatic fetal and neonatal brain MRI segmentation
AU - Makropoulos, Antonios
AU - Counsell, Serena J.
AU - Rueckert, Daniel
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2018/4/15
Y1 - 2018/4/15
N2 - In recent years, a variety of segmentation methods have been proposed for automatic delineation of the fetal and neonatal brain MRI. These methods aim to define regions of interest of different granularity: brain, tissue types or more localised structures. Different methodologies have been applied for this segmentation task and can be classified into unsupervised, parametric, classification, atlas fusion and deformable models. Brain atlases are commonly utilised as training data in the segmentation process. Challenges relating to the image acquisition, the rapid brain development as well as the limited availability of imaging data however hinder this segmentation task. In this paper, we review methods adopted for the perinatal brain and categorise them according to the target population, structures segmented and methodology. We outline different methods proposed in the literature and discuss their major contributions. Different approaches for the evaluation of the segmentation accuracy and benchmarks used for the segmentation quality are presented. We conclude this review with a discussion on shortcomings in the perinatal domain and possible future directions.
AB - In recent years, a variety of segmentation methods have been proposed for automatic delineation of the fetal and neonatal brain MRI. These methods aim to define regions of interest of different granularity: brain, tissue types or more localised structures. Different methodologies have been applied for this segmentation task and can be classified into unsupervised, parametric, classification, atlas fusion and deformable models. Brain atlases are commonly utilised as training data in the segmentation process. Challenges relating to the image acquisition, the rapid brain development as well as the limited availability of imaging data however hinder this segmentation task. In this paper, we review methods adopted for the perinatal brain and categorise them according to the target population, structures segmented and methodology. We outline different methods proposed in the literature and discuss their major contributions. Different approaches for the evaluation of the segmentation accuracy and benchmarks used for the segmentation quality are presented. We conclude this review with a discussion on shortcomings in the perinatal domain and possible future directions.
UR - http://www.scopus.com/inward/record.url?scp=85022094188&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2017.06.074
DO - 10.1016/j.neuroimage.2017.06.074
M3 - Review article
C2 - 28666878
AN - SCOPUS:85022094188
SN - 1053-8119
VL - 170
SP - 231
EP - 248
JO - NeuroImage
JF - NeuroImage
ER -