A PTAS for unsplittable flow on a path

Fabrizio Grandoni, Tobias Mömke, Andreas Wiese

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

In the Unsplittable Flow on a Path problem (UFP) we are given a path with edge capacities, and a set of tasks where each task is characterized by a subpath, a demand, and a weight. The goal is to select a subset of tasks of maximum total weight such that the total demand of the selected tasks using each edge e is at most the capacity of e. The problem admits a QPTAS [Bansal, Chakrabarti, Epstein, Schieber, STOC'06; Batra, Garg, Kumar, Mömke, Wiese, SODA'15]. After a long sequence of improvements [Bansal, Friggstad, Khandekar, Salavatipour, SODA'09; Bonsma, Schulz, Wiese, FOCS'11; Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA'14; Grandoni, Mömke, Wiese, Zhou, STOC'18], the best known polynomial time approximation algorithm for UFP has an approximation ratio of 1+1/(e+1) + epsilon < 1.269 [Grandoni, Mömke, Wiese, SODA'22]. It has been an open question whether this problem admits a PTAS. In this paper, we solve this open question and present a polynomial time (1 + epsilon)-approximation algorithm for UFP.

Original languageEnglish
Title of host publicationSTOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
EditorsStefano Leonardi, Anupam Gupta
PublisherAssociation for Computing Machinery
Pages289-302
Number of pages14
ISBN (Electronic)9781450392648
DOIs
StatePublished - 6 Sep 2022
Externally publishedYes
Event54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 - Rome, Italy
Duration: 20 Jun 202224 Jun 2022

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022
Country/TerritoryItaly
CityRome
Period20/06/2224/06/22

Keywords

  • approximation
  • dynamic programming
  • unsplittable flow

Fingerprint

Dive into the research topics of 'A PTAS for unsplittable flow on a path'. Together they form a unique fingerprint.

Cite this