TY - JOUR
T1 - A proteasome-regulated glycogen synthase kinase-3 modulates disease response in plants
AU - Wrzaczek, Michael
AU - Rozhon, Wilfried
AU - Jonak, Claudia
PY - 2007/2/23
Y1 - 2007/2/23
N2 - Glycogen synthase kinase-3 (GSK-3) is a key player in various important signaling pathways in animals. The activity of GSK-3 is known to be modulated by protein phosphorylation and differential complex formation. However, little information is available regarding the function and regulation of plant GSK-3/shaggy-like kinases (GSKs). Analysis of the in vivo kinase activity of MsK1, a GSK from Medicago sativa, revealed that MsK1 is active in healthy plants and that MsK1 activity is down-regulated by the elicitor cellulase in a time- and dose-dependent manner. Surprisingly, cellulase treatment triggered the degradation of the MsK1 protein in a proteasome-dependent manner suggesting a novel mechanism of GSK-3 regulation. Inhibition of MsK1 kinase activity and degradation of the protein were two successive processes that could be uncoupled. In a transgenic approach, stimulus-induced inhibition of MsK1 was impeded by constant replenishment of MsK1 by a strong constitutive promoter. MsK1 overexpressing plants exhibited enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae. MAP kinase activation in response to pathogen infection was compromised in plants with elevated MsK1 levels. These data strongly suggest that tight regulation of the plant GSK-3, MsK1, may be important for innate immunity to limit the severity of virulent bacterial infection.
AB - Glycogen synthase kinase-3 (GSK-3) is a key player in various important signaling pathways in animals. The activity of GSK-3 is known to be modulated by protein phosphorylation and differential complex formation. However, little information is available regarding the function and regulation of plant GSK-3/shaggy-like kinases (GSKs). Analysis of the in vivo kinase activity of MsK1, a GSK from Medicago sativa, revealed that MsK1 is active in healthy plants and that MsK1 activity is down-regulated by the elicitor cellulase in a time- and dose-dependent manner. Surprisingly, cellulase treatment triggered the degradation of the MsK1 protein in a proteasome-dependent manner suggesting a novel mechanism of GSK-3 regulation. Inhibition of MsK1 kinase activity and degradation of the protein were two successive processes that could be uncoupled. In a transgenic approach, stimulus-induced inhibition of MsK1 was impeded by constant replenishment of MsK1 by a strong constitutive promoter. MsK1 overexpressing plants exhibited enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae. MAP kinase activation in response to pathogen infection was compromised in plants with elevated MsK1 levels. These data strongly suggest that tight regulation of the plant GSK-3, MsK1, may be important for innate immunity to limit the severity of virulent bacterial infection.
UR - http://www.scopus.com/inward/record.url?scp=34247117371&partnerID=8YFLogxK
U2 - 10.1074/jbc.M610135200
DO - 10.1074/jbc.M610135200
M3 - Article
C2 - 17179144
AN - SCOPUS:34247117371
SN - 0021-9258
VL - 282
SP - 5249
EP - 5255
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 8
ER -