TY - JOUR
T1 - A Phenomenological Model Reproducing Temporal Response Characteristics of an Electrically Stimulated Auditory Nerve Fiber
AU - Takanen, Marko
AU - Seeber, Bernhard U.
N1 - Publisher Copyright:
© The Author(s) 2022.
PY - 2022
Y1 - 2022
N2 - The ability of cochlear implants (CIs) to restore hearing to profoundly deaf people is based on direct electrical stimulation of the auditory nerve fibers (ANFs). Still, CI users do not achieve as good hearing outcomes as their normal-hearing peers. The development and optimization of CI stimulation strategies to reduce that gap could benefit from computational models that can predict responses evoked by different stimulation patterns, particularly temporal responses for coding of temporal fine structure information. To that end, we present the sequential biphasic leaky integrate-and-fire (S-BLIF) model for the ANF response to various pulse shapes and temporal sequences. The phenomenological S-BLIF model is adapted from the earlier BLIF model that can reproduce neurophysiological single-fiber cat ANF data from single-pulse stimulations. It was extended with elements that simulate refractoriness, facilitation, accommodation and long-term adaptation by affecting the threshold value of the model momentarily after supra- and subthreshold stimulation. Evaluation of the model demonstrated that it can reproduce neurophysiological data from single neuron recordings involving temporal phenomena related to inter-pulse interactions. Specifically, data for refractoriness, facilitation, accommodation and spike-rate adaptation can be reproduced. In addition, the model can account for effects of pulse rate on the synchrony between the pulsatile input and the spike-train output. Consequently, the model offers a versatile tool for testing new coding strategies for, e.g., temporal fine structure using pseudo-monophasic pulses, and for estimating the status of the electrode-neuron interface in the CI user's cochlea.
AB - The ability of cochlear implants (CIs) to restore hearing to profoundly deaf people is based on direct electrical stimulation of the auditory nerve fibers (ANFs). Still, CI users do not achieve as good hearing outcomes as their normal-hearing peers. The development and optimization of CI stimulation strategies to reduce that gap could benefit from computational models that can predict responses evoked by different stimulation patterns, particularly temporal responses for coding of temporal fine structure information. To that end, we present the sequential biphasic leaky integrate-and-fire (S-BLIF) model for the ANF response to various pulse shapes and temporal sequences. The phenomenological S-BLIF model is adapted from the earlier BLIF model that can reproduce neurophysiological single-fiber cat ANF data from single-pulse stimulations. It was extended with elements that simulate refractoriness, facilitation, accommodation and long-term adaptation by affecting the threshold value of the model momentarily after supra- and subthreshold stimulation. Evaluation of the model demonstrated that it can reproduce neurophysiological data from single neuron recordings involving temporal phenomena related to inter-pulse interactions. Specifically, data for refractoriness, facilitation, accommodation and spike-rate adaptation can be reproduced. In addition, the model can account for effects of pulse rate on the synchrony between the pulsatile input and the spike-train output. Consequently, the model offers a versatile tool for testing new coding strategies for, e.g., temporal fine structure using pseudo-monophasic pulses, and for estimating the status of the electrode-neuron interface in the CI user's cochlea.
KW - auditory model
KW - cochlear implant
KW - electrical stimulation
KW - inter-pulse interaction
KW - single-fiber recordings
UR - http://www.scopus.com/inward/record.url?scp=85137490824&partnerID=8YFLogxK
U2 - 10.1177/23312165221117079
DO - 10.1177/23312165221117079
M3 - Article
C2 - 36071660
AN - SCOPUS:85137490824
SN - 2331-2165
VL - 26
JO - Trends in Hearing
JF - Trends in Hearing
ER -