A Novel Variable Stiffness Suspension System for Improved Stability and Control of Tactile Mobile Manipulators

Sebastian Kuhn, Mehmet C. Yildirim, Edmundo Pozo Fortunić, Kübra Karacan, Abdalla Swikir, Sami Haddadin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Mobile manipulators (MM) have proven valuable in assisting humans in industrial settings. However, their strict separation from humans in controlled environments limits their effectiveness. Efforts have been made to bridge this gap for physical human-robot interaction (pHRI), leading to the development of collaborative mobile manipulators (CMM). Nonetheless, unpredictable environments continue to present challenges. This paper introduces an innovative suspension design for mobile bases (MBs) to enhance the safety and autonomy of CMMs. We propose an electromechanical approach leveraging variable stiffness and combining passive springs with adaptive transmission mechanisms. Through simulation, physical prototype development, and experimental validation, we demonstrate the effectiveness of our approach in stabilizing the MB against external disturbances. Our findings provide valuable insights for the development of CMMs in dynamic environments.

Original languageEnglish
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3682-3689
Number of pages8
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: 14 Oct 202418 Oct 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period14/10/2418/10/24

Fingerprint

Dive into the research topics of 'A Novel Variable Stiffness Suspension System for Improved Stability and Control of Tactile Mobile Manipulators'. Together they form a unique fingerprint.

Cite this