A non-convex variational approach to photometric stereo under inaccurate lighting

Yvain Quéau, Tao Wu, François Lauze, Jean Denis Durou, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

48 Scopus citations

Abstract

This paper tackles the photometric stereo problem in the presence of inaccurate lighting, obtained either by calibration or by an uncalibrated photometric stereo method. Based on a precise modeling of noise and outliers, a robust variational approach is introduced. It explicitly accounts for self-shadows, and enforces robustness to castshadows and specularities by resorting to redescending Mestimators. The resulting non-convex model is solved by means of a computationally efficient alternating reweighted least-squares algorithm. Since it implicitly enforces integrability, the new variational approach can refine both the intensities and the directions of the lighting.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages350-359
Number of pages10
ISBN (Electronic)9781538604571
DOIs
StatePublished - 6 Nov 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 21 Jul 201726 Jul 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period21/07/1726/07/17

Fingerprint

Dive into the research topics of 'A non-convex variational approach to photometric stereo under inaccurate lighting'. Together they form a unique fingerprint.

Cite this