TY - JOUR
T1 - A new variable importance measure for random forests with missing data
AU - Hapfelmeier, Alexander
AU - Hothorn, Torsten
AU - Ulm, Kurt
AU - Strobl, Carolin
PY - 2014/1
Y1 - 2014/1
N2 - Random forests are widely used in many research fields for prediction and interpretation purposes. Their popularity is rooted in several appealing characteristics, such as their ability to deal with high dimensional data, complex interactions and correlations between variables. Another important feature is that random forests provide variable importance measures that can be used to identify the most important predictor variables. Though there are alternatives like complete case analysis and imputation, existing methods for the computation of such measures cannot be applied straightforward when the data contains missing values. This paper presents a solution to this pitfall by introducing a new variable importance measure that is applicable to any kind of data-whether it does or does not contain missing values. An extensive simulation study shows that the new measure meets sensible requirements and shows good variable ranking properties. An application to two real data sets also indicates that the new approach may provide a more sensible variable ranking than the widespread complete case analysis. It takes the occurrence of missing values into account which makes results also differ from those obtained under multiple imputation.
AB - Random forests are widely used in many research fields for prediction and interpretation purposes. Their popularity is rooted in several appealing characteristics, such as their ability to deal with high dimensional data, complex interactions and correlations between variables. Another important feature is that random forests provide variable importance measures that can be used to identify the most important predictor variables. Though there are alternatives like complete case analysis and imputation, existing methods for the computation of such measures cannot be applied straightforward when the data contains missing values. This paper presents a solution to this pitfall by introducing a new variable importance measure that is applicable to any kind of data-whether it does or does not contain missing values. An extensive simulation study shows that the new measure meets sensible requirements and shows good variable ranking properties. An application to two real data sets also indicates that the new approach may provide a more sensible variable ranking than the widespread complete case analysis. It takes the occurrence of missing values into account which makes results also differ from those obtained under multiple imputation.
KW - Missing data
KW - Missing values
KW - Permutation importance
KW - Random forests
KW - Variable importance measures
UR - http://www.scopus.com/inward/record.url?scp=84891629894&partnerID=8YFLogxK
U2 - 10.1007/s11222-012-9349-1
DO - 10.1007/s11222-012-9349-1
M3 - Article
AN - SCOPUS:84891629894
SN - 0960-3174
VL - 24
SP - 21
EP - 34
JO - Statistics and Computing
JF - Statistics and Computing
IS - 1
ER -