A nanoscaffolded spike-rbd vaccine provides protection against sars-cov-2 with minimal anti-scaffold response

Duško Lainšček, Tina Fink, Vida Forstnerič, Iva Hafner-Bratkovič, Sara Orehek, Žiga Strmšek, Mateja Manček-Keber, Peter Pečan, Hana Esih, Špela Malenšek, Jana Aupič, Petra Dekleva, Tjaša Plaper, Sara Vidmar, Lucija Kadunc, Mojca Benčina, Neža Omersa, Gregor Anderluh, Florence Pojer, Kelvin LauDavid Hacker, Bruno E. Correia, David Peterhoff, Ralf Wagner, Valter Bergant, Alexander Herrmann, Andreas Pichlmair, Roman Jerala

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and β-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small β-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The β-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the β-annulus peptide for vaccine design.

Original languageEnglish
Article number431
JournalVaccines
Volume9
Issue number5
DOIs
StatePublished - May 2021
Externally publishedYes

Keywords

  • Nano-scaffolding domains
  • RBD-bann
  • SARS-CoV-2
  • T-cell response
  • Vaccine

Fingerprint

Dive into the research topics of 'A nanoscaffolded spike-rbd vaccine provides protection against sars-cov-2 with minimal anti-scaffold response'. Together they form a unique fingerprint.

Cite this