Abstract
We present an approach to simulate flows driven by surface tension based on triangle meshes. Our method consists of two simulation layers: the first layer is an Eulerian method for simulating surface tension forces that is free from typical strict time step constraints. The second simulation layer is a Lagrangian finite element method that simulates sub-grid scale wave details on the fluid surface. The surface wave simulation employs an unconditionally stable, symplectic time integration method that allows for a high propagation speed due to strong surface tension. Our approach can naturally separate the grid-and sub-grid scales based on a volumepreserving mean curvature flow. As our model for the sub-grid dynamics enforces a local conservation of mass, it leads to realistic pinch off and merging effects. In addition to this method for simulating dynamic surface tension effects, we also present an efficient non-oscillatory approximation for capturing damped surface tension behavior. These approaches allow us to efficiently simulate complex phenomena associated with strong surface tension, such as Rayleigh-Plateau instabilities and crown splashes, in a short amount of time.
Original language | English |
---|---|
Article number | 48 |
Journal | ACM Transactions on Graphics |
Volume | 29 |
Issue number | 4 |
DOIs | |
State | Published - 2010 |
Externally published | Yes |
Keywords
- Fluid simulation
- Physically based animation
- Surface tension