A multilayered urban tree dataset of point clouds, quantitative structure and graph models

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The significance of urban trees in promoting human health and well-being has been amplified by urbanization and the climate change effects. Simultaneously, advancements in remote sensing techniques have enhanced the opportunities for studying urban trees. The TreeML-Data has been compiled to support these efforts. It consists of labelled point clouds of 40 scanning projects of streets in Munich, 3,755 leaf-off (scans in winter) point clouds of individual trees, quantitative structure models (QSM), tree structure measurements, and tree graph structure models of these trees. The dataset offers valuable data for generating and evaluating models in various scientific disciplines, which include remote sensing, computer vision, machine learning, urban forestry, urban ecosystem, green architecture, and graph analysis. To ensure its quality, the tree structure measurements and QSM have been crosschecked. For instance, the tree diameter at breast height (DBH) in the sample dataset exhibits a deviation of approximately 1.5 cm (4.3%) when compared to manual measurements. In conclusion, the quality checks confirm its reliability for subsequent studies when compared to manual measurements.

Original languageEnglish
Article number28
JournalScientific Data
Volume11
Issue number1
DOIs
StatePublished - Dec 2024

Fingerprint

Dive into the research topics of 'A multilayered urban tree dataset of point clouds, quantitative structure and graph models'. Together they form a unique fingerprint.

Cite this