TY - JOUR
T1 - A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography
AU - Fuin, Niccolo
AU - Bustin, Aurelien
AU - Küstner, Thomas
AU - Oksuz, Ilkay
AU - Clough, James
AU - King, Andrew P.
AU - Schnabel, Julia A.
AU - Botnar, René M.
AU - Prieto, Claudia
N1 - Publisher Copyright:
© 2020
PY - 2020/7
Y1 - 2020/7
N2 - Purpose: To enable fast reconstruction of undersampled motion-compensated whole-heart 3D coronary magnetic resonance angiography (CMRA) by learning a multi-scale variational neural network (MS-VNN) which allows the acquisition of high-quality 1.2 × 1.2 × 1.2 mm isotropic volumes in a short and predictable scan time. Methods: Eighteen healthy subjects and one patient underwent free-breathing 3D CMRA acquisition with variable density spiral-like Cartesian sampling, combined with 2D image navigators for translational motion estimation/compensation. The proposed MS-VNN learns two sets of kernels and activation functions for the magnitude and phase images of the complex-valued data. For the magnitude, a multi-scale approach is applied to better capture the small calibre of the coronaries. Ten subjects were considered for training and validation. Prospectively undersampled motion-compensated data with 5-fold and 9-fold accelerations, from the remaining 9 subjects, were used to evaluate the framework. The proposed approach was compared to Wavelet-based compressed-sensing (CS), conventional VNN, and to an additional fully-sampled (FS) scan. Results: The average acquisition time (m:s) was 4:11 for 5-fold, 2:34 for 9-fold acceleration and 18:55 for fully-sampled. Reconstruction time with the proposed MS-VNN was ~14 s. The proposed MS-VNN achieves higher image quality than CS and VNN reconstructions, with quantitative right coronary artery sharpness (CS:43.0%, VNN:43.9%, MS-VNN:47.0%, FS:50.67%) and vessel length (CS:7.4 cm, VNN:7.7 cm, MS-VNN:8.8 cm, FS:9.1 cm) comparable to the FS scan. Conclusion: The proposed MS-VNN enables 5-fold and 9-fold undersampled CMRA acquisitions with comparable image quality that the corresponding fully-sampled scan. The proposed framework achieves extremely fast reconstruction time and does not require tuning of regularization parameters, offering easy integration into clinical workflow.
AB - Purpose: To enable fast reconstruction of undersampled motion-compensated whole-heart 3D coronary magnetic resonance angiography (CMRA) by learning a multi-scale variational neural network (MS-VNN) which allows the acquisition of high-quality 1.2 × 1.2 × 1.2 mm isotropic volumes in a short and predictable scan time. Methods: Eighteen healthy subjects and one patient underwent free-breathing 3D CMRA acquisition with variable density spiral-like Cartesian sampling, combined with 2D image navigators for translational motion estimation/compensation. The proposed MS-VNN learns two sets of kernels and activation functions for the magnitude and phase images of the complex-valued data. For the magnitude, a multi-scale approach is applied to better capture the small calibre of the coronaries. Ten subjects were considered for training and validation. Prospectively undersampled motion-compensated data with 5-fold and 9-fold accelerations, from the remaining 9 subjects, were used to evaluate the framework. The proposed approach was compared to Wavelet-based compressed-sensing (CS), conventional VNN, and to an additional fully-sampled (FS) scan. Results: The average acquisition time (m:s) was 4:11 for 5-fold, 2:34 for 9-fold acceleration and 18:55 for fully-sampled. Reconstruction time with the proposed MS-VNN was ~14 s. The proposed MS-VNN achieves higher image quality than CS and VNN reconstructions, with quantitative right coronary artery sharpness (CS:43.0%, VNN:43.9%, MS-VNN:47.0%, FS:50.67%) and vessel length (CS:7.4 cm, VNN:7.7 cm, MS-VNN:8.8 cm, FS:9.1 cm) comparable to the FS scan. Conclusion: The proposed MS-VNN enables 5-fold and 9-fold undersampled CMRA acquisitions with comparable image quality that the corresponding fully-sampled scan. The proposed framework achieves extremely fast reconstruction time and does not require tuning of regularization parameters, offering easy integration into clinical workflow.
KW - Cardiac MRI
KW - Coronary imaging
KW - Fast imaging
KW - Undersampling
KW - Variational neural network
UR - http://www.scopus.com/inward/record.url?scp=85084453689&partnerID=8YFLogxK
U2 - 10.1016/j.mri.2020.04.007
DO - 10.1016/j.mri.2020.04.007
M3 - Article
C2 - 32353528
AN - SCOPUS:85084453689
SN - 0730-725X
VL - 70
SP - 155
EP - 167
JO - Magnetic Resonance Imaging
JF - Magnetic Resonance Imaging
ER -