TY - JOUR
T1 - A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters
AU - Koutsourelakis, P. S.
PY - 2009/9/20
Y1 - 2009/9/20
N2 - This paper proposes a hierarchical, multi-resolution framework for the identification of model parameters and their spatially variability from noisy measurements of the response or output. Such parameters are frequently encountered in PDE-based models and correspond to quantities such as density or pressure fields, elasto-plastic moduli and internal variables in solid mechanics, conductivity fields in heat diffusion problems, permeability fields in fluid flow through porous media etc. The proposed model has all the advantages of traditional Bayesian formulations such as the ability to produce measures of confidence for the inferences made and providing not only predictive estimates but also quantitative measures of the predictive uncertainty. In contrast to existing approaches it utilizes a parsimonious, non-parametric formulation that favors sparse representations and whose complexity can be determined from the data. The proposed framework in non-intrusive and makes use of a sequence of forward solvers operating at various resolutions. As a result, inexpensive, coarse solvers are used to identify the most salient features of the unknown field(s) which are subsequently enriched by invoking solvers operating at finer resolutions. This leads to significant computational savings particularly in problems involving computationally demanding forward models but also improvements in accuracy. It is based on a novel, adaptive scheme based on Sequential Monte Carlo sampling which is embarrassingly parallelizable and circumvents issues with slow mixing encountered in Markov Chain Monte Carlo schemes. The capabilities of the proposed methodology are illustrated in problems from nonlinear solid mechanics with special attention to cases where the data is contaminated with random noise and the scale of variability of the unknown field is smaller than the scale of the grid where observations are collected.
AB - This paper proposes a hierarchical, multi-resolution framework for the identification of model parameters and their spatially variability from noisy measurements of the response or output. Such parameters are frequently encountered in PDE-based models and correspond to quantities such as density or pressure fields, elasto-plastic moduli and internal variables in solid mechanics, conductivity fields in heat diffusion problems, permeability fields in fluid flow through porous media etc. The proposed model has all the advantages of traditional Bayesian formulations such as the ability to produce measures of confidence for the inferences made and providing not only predictive estimates but also quantitative measures of the predictive uncertainty. In contrast to existing approaches it utilizes a parsimonious, non-parametric formulation that favors sparse representations and whose complexity can be determined from the data. The proposed framework in non-intrusive and makes use of a sequence of forward solvers operating at various resolutions. As a result, inexpensive, coarse solvers are used to identify the most salient features of the unknown field(s) which are subsequently enriched by invoking solvers operating at finer resolutions. This leads to significant computational savings particularly in problems involving computationally demanding forward models but also improvements in accuracy. It is based on a novel, adaptive scheme based on Sequential Monte Carlo sampling which is embarrassingly parallelizable and circumvents issues with slow mixing encountered in Markov Chain Monte Carlo schemes. The capabilities of the proposed methodology are illustrated in problems from nonlinear solid mechanics with special attention to cases where the data is contaminated with random noise and the scale of variability of the unknown field is smaller than the scale of the grid where observations are collected.
KW - Bayesian
KW - Complex systems
KW - Monte Carlo
KW - Statistical learning
KW - Uncertainty
UR - http://www.scopus.com/inward/record.url?scp=67650272396&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2009.05.016
DO - 10.1016/j.jcp.2009.05.016
M3 - Article
AN - SCOPUS:67650272396
SN - 0021-9991
VL - 228
SP - 6184
EP - 6211
JO - Journal of Computational Physics
JF - Journal of Computational Physics
IS - 17
ER -