Abstract
This paper uses the quantitative details of the anatomy of the auditory papilla in the Tokay gecko Gekko gecko (as described in the companion paper) to make a quantitative model predicting the tonotopic organization of two of the three papillar areas. Assuming that hair-cell bundle stiffness is similar to that of other species, a model of resonance frequencies for the apical areas of the papilla was constructed, taking into account factors such as the number of hair cells per resonant unit, their bundle dimensions, the volume of the tectorial mass, etc. The model predicts that the apical pre- and postaxial areas, although anatomically adjacent, respond to different frequency ranges, a phenomenon not yet reported from any vertebrate. The model predicts that together, these areas respond best to frequencies between 1.1 and 5.3 kHz, close to the range found physiologically [Eatock et al. (1981) J. Comp. Physiol. 142, 203-218] (0.8 to 5 kHz) for the high-frequency range for this species. Only physiological experiments tracing responses to specific papillar nerve fibres can confirm or refute these interesting predictions of the model. The model also indicates that, compared to free-standing hair-cell bundles, the semi-isolated tectorial structures called sallets not only lower the range of characteristic frequencies but also increase the frequency selectivity of the attached hair cells.
Original language | English |
---|---|
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Hearing Research |
Volume | 82 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1995 |
Keywords
- Basilar papilla
- Frequency tuning
- Gecko
- Hearing
- Lizard
- Tuning model