A model independent parametrization of the optical properties of the refrozen IceCube drill holes

The IceCube Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

The IceCube Neutrino Observatory deployed 5160 digital optical modules (DOMs) in a cubic kilometer of deep, glacial ice below the geographic South Pole, recording the Cherenkov light of passing charged particles. While the optical properties of the undisturbed ice are nowadays well understood, the properties of the refrozen drill holes still pose a challenge. From camera observations, we expect a central, strongly scattering column shadowing a part of the DOMs’ sensitive area. In MC simulation, this effect is commonly modeled as a modification to the DOMs’ angular acceptance curve, reducing the forward sensitivity of the DOMs. The associated uncertainty is a dominant detector systematic for neutrino oscillation studies as well as high-energy cascade reconstructions. Over the years, several measurements and fits of the drill holes’ optical properties and of the angular acceptance curve have been proposed, some of which are in tension. Here, we present a principle component analysis, which allows us to interpolate between all suggested scenarios, and thus provide a complete systematic variation within a unified framework at analysis level.

Original languageEnglish
Article number1034
JournalProceedings of Science
Volume444
StatePublished - 27 Sep 2024
Event38th International Cosmic Ray Conference, ICRC 2023 - Nagoya, Japan
Duration: 26 Jul 20233 Aug 2023

Fingerprint

Dive into the research topics of 'A model independent parametrization of the optical properties of the refrozen IceCube drill holes'. Together they form a unique fingerprint.

Cite this