Abstract
The powder bed fusion of metals using a laser beam enables the additive manufacturing of topology-optimized parts involving structural transitions and rapid cross-sectional changes. Both geometry features can cause shrink lines, which reduce the dimensional accuracy and the fatigue resistance of the manufactured part. To provide reduction measures, their point of origin needs to be located in advance. This work presents an algorithm capable of automatically predicting the shrink line location for arbitrary discretized geometries. The results demonstrate the reliable detection and layer-wise characterization of the shrink-line-causing geometry features. Suitable discretization parameters were derived and the dependence of the computational time on the part complexity was quantified.
Original language | English |
---|---|
Pages (from-to) | 561-566 |
Number of pages | 6 |
Journal | Procedia CIRP |
Volume | 126 |
DOIs | |
State | Published - 2024 |
Event | 17th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2023 - Naples, Italy Duration: 12 Jul 2023 → 14 Jul 2023 |
Keywords
- Additive manufacturing
- finite elements
- geometry analysis
- modeling
- numerics
- shrink line