TY - GEN
T1 - A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences
AU - Pauly, Olivier
AU - Heibel, Hauke
AU - Navab, Nassir
PY - 2010
Y1 - 2010
N2 - Deformable guide-wire tracking in fluoroscopic sequences is a challenging task due to the low signal to noise ratio of the images and the apparent complex motion of the object of interest. Common tracking methods are based on data terms that do not differentiate well between medical tools and anatomic background such as ribs and vertebrae. A data term learned directly from fluoroscopic sequences would be more adapted to the image characteristics and could help to improve tracking. In this work, our contribution is to learn the relationship between features extracted from the original image and the tracking error. By randomly deforming a guide-wire model around its ground truth position in one single reference frame, we explore the space spanned by these features. Therefore, a guide-wire motion distribution model is learned to reduce the intrisic dimensionality of this feature space. Random deformations and the corresponding features can be then automatically generated. In a regression approach, the function mapping this space to the tracking error is learned. The resulting data term is integrated into a tracking framework based on a second-order MAP-MRF formulation which is optimized by QPBO moves yielding high-quality tracking results. Experiments conducted on two fluoroscopic sequences show that our approach is a promising alternative for deformable tracking of guide-wires.
AB - Deformable guide-wire tracking in fluoroscopic sequences is a challenging task due to the low signal to noise ratio of the images and the apparent complex motion of the object of interest. Common tracking methods are based on data terms that do not differentiate well between medical tools and anatomic background such as ribs and vertebrae. A data term learned directly from fluoroscopic sequences would be more adapted to the image characteristics and could help to improve tracking. In this work, our contribution is to learn the relationship between features extracted from the original image and the tracking error. By randomly deforming a guide-wire model around its ground truth position in one single reference frame, we explore the space spanned by these features. Therefore, a guide-wire motion distribution model is learned to reduce the intrisic dimensionality of this feature space. Random deformations and the corresponding features can be then automatically generated. In a regression approach, the function mapping this space to the tracking error is learned. The resulting data term is integrated into a tracking framework based on a second-order MAP-MRF formulation which is optimized by QPBO moves yielding high-quality tracking results. Experiments conducted on two fluoroscopic sequences show that our approach is a promising alternative for deformable tracking of guide-wires.
UR - http://www.scopus.com/inward/record.url?scp=84874863641&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-15711-0_43
DO - 10.1007/978-3-642-15711-0_43
M3 - Conference contribution
C2 - 20879418
AN - SCOPUS:84874863641
SN - 3642157106
SN - 9783642157103
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 343
EP - 350
BT - Medical Image Computing and Computer-Assisted Intervention, MICCAI2010 - 13th International Conference, Proceedings
T2 - 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010
Y2 - 20 September 2010 through 24 September 2010
ER -