A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences

Olivier Pauly, Hauke Heibel, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

36 Scopus citations

Abstract

Deformable guide-wire tracking in fluoroscopic sequences is a challenging task due to the low signal to noise ratio of the images and the apparent complex motion of the object of interest. Common tracking methods are based on data terms that do not differentiate well between medical tools and anatomic background such as ribs and vertebrae. A data term learned directly from fluoroscopic sequences would be more adapted to the image characteristics and could help to improve tracking. In this work, our contribution is to learn the relationship between features extracted from the original image and the tracking error. By randomly deforming a guide-wire model around its ground truth position in one single reference frame, we explore the space spanned by these features. Therefore, a guide-wire motion distribution model is learned to reduce the intrisic dimensionality of this feature space. Random deformations and the corresponding features can be then automatically generated. In a regression approach, the function mapping this space to the tracking error is learned. The resulting data term is integrated into a tracking framework based on a second-order MAP-MRF formulation which is optimized by QPBO moves yielding high-quality tracking results. Experiments conducted on two fluoroscopic sequences show that our approach is a promising alternative for deformable tracking of guide-wires.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI2010 - 13th International Conference, Proceedings
Pages343-350
Number of pages8
EditionPART 3
DOIs
StatePublished - 2010
Event13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010 - Beijing, China
Duration: 20 Sep 201024 Sep 2010

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 3
Volume6363 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010
Country/TerritoryChina
CityBeijing
Period20/09/1024/09/10

Fingerprint

Dive into the research topics of 'A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences'. Together they form a unique fingerprint.

Cite this