TY - GEN
T1 - A Line to Align
T2 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
AU - Maier, Heiko
AU - Faghihroohi, Shahrooz
AU - Navab, Nassir
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - In order to scan for or monitor retinal diseases, OCT is a useful diagnostic tool that allows to take high-resolution images of the retinal layers. For the aim of fully automated, semantic segmentation of OCT images, both graph based models and deep neural networks have been used so far. Here, we propose to interpret the semantic segmentation of 2D OCT images as a sequence alignment task. Splitting the image into its constituent OCT scanning lines (A-Modes), we align an anatomically justified sequence of labels to these pixel sequences, using dynamic time warping. Combining this dynamic programming approach with learned convolutional filters allows us to leverage the feature extraction capabilities of deep neural networks, while at the same time enforcing explicit guarantees in terms of the anatomical order of layers through the dynamic programming. We investigate both the solitary training of the feature extraction stage, as well as an end-to-end learning of the alignment. The latter makes use of a recently proposed, relaxed formulation of dynamic time warping, that allows us to backpropagate through the dynamic program to enable end-to-end training of the network. Complementing these approaches, a local consistency criterion for the alignment task is investigated, that allows to improve consistency in the alignment of neighbouring A-Modes. We compare this approach to two state of the art methods, showing favourable results.
AB - In order to scan for or monitor retinal diseases, OCT is a useful diagnostic tool that allows to take high-resolution images of the retinal layers. For the aim of fully automated, semantic segmentation of OCT images, both graph based models and deep neural networks have been used so far. Here, we propose to interpret the semantic segmentation of 2D OCT images as a sequence alignment task. Splitting the image into its constituent OCT scanning lines (A-Modes), we align an anatomically justified sequence of labels to these pixel sequences, using dynamic time warping. Combining this dynamic programming approach with learned convolutional filters allows us to leverage the feature extraction capabilities of deep neural networks, while at the same time enforcing explicit guarantees in terms of the anatomical order of layers through the dynamic programming. We investigate both the solitary training of the feature extraction stage, as well as an end-to-end learning of the alignment. The latter makes use of a recently proposed, relaxed formulation of dynamic time warping, that allows us to backpropagate through the dynamic program to enable end-to-end training of the network. Complementing these approaches, a local consistency criterion for the alignment task is investigated, that allows to improve consistency in the alignment of neighbouring A-Modes. We compare this approach to two state of the art methods, showing favourable results.
KW - Image segmentation
KW - OCT
KW - Ophthalmology
UR - http://www.scopus.com/inward/record.url?scp=85116450118&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-87193-2_67
DO - 10.1007/978-3-030-87193-2_67
M3 - Conference contribution
AN - SCOPUS:85116450118
SN - 9783030871925
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 709
EP - 719
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
A2 - de Bruijne, Marleen
A2 - de Bruijne, Marleen
A2 - Cattin, Philippe C.
A2 - Cotin, Stéphane
A2 - Padoy, Nicolas
A2 - Speidel, Stefanie
A2 - Zheng, Yefeng
A2 - Essert, Caroline
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 27 September 2021 through 1 October 2021
ER -