TY - GEN
T1 - A Learning-based Controller for Multi-Contact Grasps on Unknown Objects with a Dexterous Hand
AU - Winkelbauer, Dominik
AU - Triebel, Rudolph
AU - Bauml, Berthold
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Existing grasp controllers usually either only support finger-tip grasps or need explicit configuration of the inner forces. We propose a novel grasp controller that supports arbitrary grasp types, including power grasps with multi-contacts, while operating self-contained on before unseen objects. No detailed contact information is needed, but only a rough 3D model, e.g., reconstructed from a single depth image. First, the external wrench being applied to the object is estimated by using the measured torques at the joints. Then, the torques necessary to counteract the estimated wrench while keeping the object at its initial pose are predicted. The torques are commanded via desired joint angles to an underlying joint-level impedance controller. To reach real-time performance, we propose a learning-based approach that is based on a wrench estimator- and a torque predictor neural network. Both networks are trained in a supervised fashion using data generated via the analytical formulation of the controller. In an extensive simulation-based evaluation, we show that our controller is able to keep 83.1% of the tested grasps stable when applying external wrenches with up to 10 N. At the same time, we outperform the two tested baselines by being more efficient and inducing less involuntary object movement. Finally, we show that the controller also works on the real DLR-Hand II, reaching a cycle time of 6 ms. Website: aidx-lab.org/grasping
AB - Existing grasp controllers usually either only support finger-tip grasps or need explicit configuration of the inner forces. We propose a novel grasp controller that supports arbitrary grasp types, including power grasps with multi-contacts, while operating self-contained on before unseen objects. No detailed contact information is needed, but only a rough 3D model, e.g., reconstructed from a single depth image. First, the external wrench being applied to the object is estimated by using the measured torques at the joints. Then, the torques necessary to counteract the estimated wrench while keeping the object at its initial pose are predicted. The torques are commanded via desired joint angles to an underlying joint-level impedance controller. To reach real-time performance, we propose a learning-based approach that is based on a wrench estimator- and a torque predictor neural network. Both networks are trained in a supervised fashion using data generated via the analytical formulation of the controller. In an extensive simulation-based evaluation, we show that our controller is able to keep 83.1% of the tested grasps stable when applying external wrenches with up to 10 N. At the same time, we outperform the two tested baselines by being more efficient and inducing less involuntary object movement. Finally, we show that the controller also works on the real DLR-Hand II, reaching a cycle time of 6 ms. Website: aidx-lab.org/grasping
UR - http://www.scopus.com/inward/record.url?scp=85216453969&partnerID=8YFLogxK
U2 - 10.1109/IROS58592.2024.10801894
DO - 10.1109/IROS58592.2024.10801894
M3 - Conference contribution
AN - SCOPUS:85216453969
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 7331
EP - 7337
BT - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Y2 - 14 October 2024 through 18 October 2024
ER -