A Learning-based Controller for Multi-Contact Grasps on Unknown Objects with a Dexterous Hand

Dominik Winkelbauer, Rudolph Triebel, Berthold Bauml

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Existing grasp controllers usually either only support finger-tip grasps or need explicit configuration of the inner forces. We propose a novel grasp controller that supports arbitrary grasp types, including power grasps with multi-contacts, while operating self-contained on before unseen objects. No detailed contact information is needed, but only a rough 3D model, e.g., reconstructed from a single depth image. First, the external wrench being applied to the object is estimated by using the measured torques at the joints. Then, the torques necessary to counteract the estimated wrench while keeping the object at its initial pose are predicted. The torques are commanded via desired joint angles to an underlying joint-level impedance controller. To reach real-time performance, we propose a learning-based approach that is based on a wrench estimator- and a torque predictor neural network. Both networks are trained in a supervised fashion using data generated via the analytical formulation of the controller. In an extensive simulation-based evaluation, we show that our controller is able to keep 83.1% of the tested grasps stable when applying external wrenches with up to 10 N. At the same time, we outperform the two tested baselines by being more efficient and inducing less involuntary object movement. Finally, we show that the controller also works on the real DLR-Hand II, reaching a cycle time of 6 ms. Website: aidx-lab.org/grasping

Original languageEnglish
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7331-7337
Number of pages7
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: 14 Oct 202418 Oct 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period14/10/2418/10/24

Fingerprint

Dive into the research topics of 'A Learning-based Controller for Multi-Contact Grasps on Unknown Objects with a Dexterous Hand'. Together they form a unique fingerprint.

Cite this