TY - JOUR
T1 - A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer
AU - Karimi, M.
AU - Croaker, P.
AU - Maxit, L.
AU - Robin, O.
AU - Skvortsov, A.
AU - Marburg, S.
AU - Kessissoglou, N.
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2020/1
Y1 - 2020/1
N2 - In this work, a hybrid numerical approach to predict the vibrational responses of planar structures excited by a turbulent boundary layer is presented. The approach combines an uncorrelated wall plane wave technique with the finite element method. The wall pressure field induced by a turbulent boundary layer is obtained as a set of uncorrelated wall pressure plane waves. The amplitude of these plane waves are determined from the cross spectrum density function of the wall pressure field given either by empirical models from literature or from experimental data. The response of the planar structure subject to a turbulent boundary layer excitation is then obtained from an ensemble average of the different realizations. The numerical technique is computationally efficient as it rapidly converges using a small number of realizations. To demonstrate the method, the vibrational responses of two panels with simply supported or clamped boundary conditions and excited by a turbulent flow are considered. In the case study comprising a plate with simply supported boundary conditions, an analytical solution is employed for verification of the method. For both cases studies, numerical results from the hybrid approach are compared with experimental data measured in two different anechoic wind tunnels.
AB - In this work, a hybrid numerical approach to predict the vibrational responses of planar structures excited by a turbulent boundary layer is presented. The approach combines an uncorrelated wall plane wave technique with the finite element method. The wall pressure field induced by a turbulent boundary layer is obtained as a set of uncorrelated wall pressure plane waves. The amplitude of these plane waves are determined from the cross spectrum density function of the wall pressure field given either by empirical models from literature or from experimental data. The response of the planar structure subject to a turbulent boundary layer excitation is then obtained from an ensemble average of the different realizations. The numerical technique is computationally efficient as it rapidly converges using a small number of realizations. To demonstrate the method, the vibrational responses of two panels with simply supported or clamped boundary conditions and excited by a turbulent flow are considered. In the case study comprising a plate with simply supported boundary conditions, an analytical solution is employed for verification of the method. For both cases studies, numerical results from the hybrid approach are compared with experimental data measured in two different anechoic wind tunnels.
KW - Finite element method
KW - Flow-induced vibration
KW - Turbulent boundary layer
KW - Uncorrelated wall plane wave
UR - http://www.scopus.com/inward/record.url?scp=85075520514&partnerID=8YFLogxK
U2 - 10.1016/j.jfluidstructs.2019.102814
DO - 10.1016/j.jfluidstructs.2019.102814
M3 - Article
AN - SCOPUS:85075520514
SN - 0889-9746
VL - 92
JO - Journal of Fluids and Structures
JF - Journal of Fluids and Structures
M1 - 102814
ER -