TY - JOUR
T1 - A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue
AU - Fischer, I. P.
AU - Irmler, M.
AU - Meyer, C. W.
AU - Sachs, S. J.
AU - Neff, F.
AU - Hrabe De Angelis, M.
AU - Beckers, J.
AU - Tschöp, M. H.
AU - Hofmann, S. M.
AU - Ussar, S.
N1 - Publisher Copyright:
© 2018 Macmillan Publishers Limited, part of Springer Nature All rights reserved.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Background/Objectives:Dieting is a popular yet often ineffective way to lower body weight, as the majority of people regain most of their pre-dieting weights in a relatively short time. The underlying molecular mechanisms driving weight regain and the increased risk for metabolic disease are still incompletely understood. Here we investigate the molecular alterations inherited from a history of obesity.Methods:In our model, male high-fat diet (HFD)-fed obese C57BL/6J mice were switched to a low caloric chow diet, resulting in a decline of body weight to that of lean mice. We measured body composition, as well as metrics of glucose, insulin and lipid homeostasis. This was accompanied by histological and gene expression analysis of adipose tissue and liver to assess adipose tissue inflammation and hepatosteatosis. Moreover, acute hypothalamic response to (re-) exposure to HFD was assessed by qPCR.Results & Conclusions:Within 7 weeks after diet switch, most obesity-associated phenotypes, such as body mass, glucose intolerance and blood metabolite levels were reversed. However, hepatic inflammation, hepatic steatosis as well as hypertrophy and inflammation of perigonadal, but not subcutaneous, adipocytes persisted in formerly obese mice. Transcriptional profiling of liver and perigonadal fat revealed an upregulation of pathways associated with immune function and cellularity. Thus, we show that weight reduction leaves signs of inflammation in liver and perigonadal fat, indicating that persisting proinflammatory signals in liver and adipose tissue could contribute to an increased risk of formerly obese subjects to develop the metabolic syndrome upon recurring weight gain.
AB - Background/Objectives:Dieting is a popular yet often ineffective way to lower body weight, as the majority of people regain most of their pre-dieting weights in a relatively short time. The underlying molecular mechanisms driving weight regain and the increased risk for metabolic disease are still incompletely understood. Here we investigate the molecular alterations inherited from a history of obesity.Methods:In our model, male high-fat diet (HFD)-fed obese C57BL/6J mice were switched to a low caloric chow diet, resulting in a decline of body weight to that of lean mice. We measured body composition, as well as metrics of glucose, insulin and lipid homeostasis. This was accompanied by histological and gene expression analysis of adipose tissue and liver to assess adipose tissue inflammation and hepatosteatosis. Moreover, acute hypothalamic response to (re-) exposure to HFD was assessed by qPCR.Results & Conclusions:Within 7 weeks after diet switch, most obesity-associated phenotypes, such as body mass, glucose intolerance and blood metabolite levels were reversed. However, hepatic inflammation, hepatic steatosis as well as hypertrophy and inflammation of perigonadal, but not subcutaneous, adipocytes persisted in formerly obese mice. Transcriptional profiling of liver and perigonadal fat revealed an upregulation of pathways associated with immune function and cellularity. Thus, we show that weight reduction leaves signs of inflammation in liver and perigonadal fat, indicating that persisting proinflammatory signals in liver and adipose tissue could contribute to an increased risk of formerly obese subjects to develop the metabolic syndrome upon recurring weight gain.
UR - http://www.scopus.com/inward/record.url?scp=85044588822&partnerID=8YFLogxK
U2 - 10.1038/ijo.2017.224
DO - 10.1038/ijo.2017.224
M3 - Review article
C2 - 28901330
AN - SCOPUS:85044588822
SN - 0307-0565
VL - 42
SP - 507
EP - 517
JO - International Journal of Obesity
JF - International Journal of Obesity
IS - 3
ER -