A gradient-based split criterion for highly accurate and transparent model trees

Klaus Broelemann, Gjergji Kasneci

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Machine learning algorithms aim at minimizing the number of false decisions and increasing the accuracy of predictions. However, the high predictive power of advanced algorithms comes at the costs of transparency. State-of-the-art methods, such as neural networks and ensemble methods, result in highly complex models with little transparency. We propose shallow model trees as a way to combine simple and highly transparent predictive models for higher predictive power without losing the transparency of the original models. We present a novel split criterion for model trees that allows for significantly higher predictive power than state-of-the-art model trees while maintaining the same level of simplicity. This novel approach finds split points which allow the underlying simple models to make better predictions on the corresponding data. In addition, we introduce multiple mechanisms to increase the transparency of the resulting trees.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2030-2037
Number of pages8
ISBN (Electronic)9780999241141
DOIs
StatePublished - 2019
Externally publishedYes
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Fingerprint

Dive into the research topics of 'A gradient-based split criterion for highly accurate and transparent model trees'. Together they form a unique fingerprint.

Cite this