A generalized heterogeneity model for spatial interpolation

Peng Luo, Yongze Song, Di Zhu, Junyi Cheng, Liqiu Meng

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Spatial heterogeneity refers to uneven distributions of geographical variables. Spatial interpolation methods that utilize spatial heterogeneity are sensitive to the way in which spatial heterogeneity is characterized. This study developed a Generalized Heterogeneity Model (GHM) for characterizing local and stratified heterogeneity within variables and to improve interpolation accuracy. GHM first divides a study area into multiple spatial strata according to the sample values and locations of a variable. Then, GHM estimates simultaneously the spatial variations of the variable within and between the spatial strata. Finally, GHM interpolates unbiased estimates and uncertainty at unsampled locations. We demonstrated the GHM by predicting the spatial distributions of marine chlorophyll in Townsville, Queensland, Australia. Results show that GHM improved both the overall interpolation accuracy across the study area and along strata boundaries compared with previous interpolation models. GHM also avoided bull’s eye patterns and abrupt changes along strata boundaries. In future studies, GHM has the potential to be integrated with machine learning and advanced algorithms to improve spatial prediction accuracy for studies in broader fields.

Original languageEnglish
Pages (from-to)634-659
Number of pages26
JournalInternational Journal of Geographical Information Science
Volume37
Issue number3
DOIs
StatePublished - 2023

Keywords

  • Spatial interpolation
  • area-to-area kriging
  • spatial heterogeneity
  • spatial statistics
  • stratified heterogeneity

Fingerprint

Dive into the research topics of 'A generalized heterogeneity model for spatial interpolation'. Together they form a unique fingerprint.

Cite this