TY - GEN
T1 - A fully coupled FEM model of electromechanically acutated mems with squeeze film damping
AU - Hannot, Stephan D.A.
AU - Rixen, Daniel J.
PY - 2009
Y1 - 2009
N2 - A specific type of Microsystems or MEMS is the so called RF-MEMS switch. In contrast to MEMS resonators switches generally do not operate in a vacuum. Therefore at the small scales of MEMS fluid (or air) damping is the most dominant damping form. This means that if one is interested in transient or frequency behavior a proper damping model is required. This paper presents a way of using the non-linear Reynolds equation to model the squeeze film damping that is often the type of fluid damping present in these switches. The formulation is provided ready for FEM implementation. Also the tangent matrices required for linearized eigen frequencies are derived. The equations are tested on a model of simple micro switch. The results show that with this model it is possible to predict the damped motion as well as the frequency behavior. The frequency results also show that damping shifts the zero frequency point away from the pull-in point. With a simple mechanical contact model it is also possible to model the closing and opening transient of a microsystem.
AB - A specific type of Microsystems or MEMS is the so called RF-MEMS switch. In contrast to MEMS resonators switches generally do not operate in a vacuum. Therefore at the small scales of MEMS fluid (or air) damping is the most dominant damping form. This means that if one is interested in transient or frequency behavior a proper damping model is required. This paper presents a way of using the non-linear Reynolds equation to model the squeeze film damping that is often the type of fluid damping present in these switches. The formulation is provided ready for FEM implementation. Also the tangent matrices required for linearized eigen frequencies are derived. The equations are tested on a model of simple micro switch. The results show that with this model it is possible to predict the damped motion as well as the frequency behavior. The frequency results also show that damping shifts the zero frequency point away from the pull-in point. With a simple mechanical contact model it is also possible to model the closing and opening transient of a microsystem.
UR - http://www.scopus.com/inward/record.url?scp=82155184588&partnerID=8YFLogxK
U2 - 10.1115/DETC2009-86450
DO - 10.1115/DETC2009-86450
M3 - Conference contribution
AN - SCOPUS:82155184588
SN - 9780791849033
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 545
EP - 552
BT - ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009
T2 - ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009
Y2 - 30 August 2009 through 2 September 2009
ER -