Abstract
This paper proposes a change detection approach that uses a low-resolution octree enhanced with Gaussian kernels to describe free and occupied space. This so-called Gaussian Occupancy Octree is derived from range measurements and used to represent spatial information for a single epoch. Changes between epochs are encoded using a Delta Octree. A qualitative and quantitative evaluation of the proposed approach shows that its advantages are a fast runtime and the ability to make a statement about the re-exploration of space. An evaluation of the classification accuracy shows that our approach tents towards correct classifications with an overall accuracy of 51.5 %, but is also systematically biased towards the appearance of occupied space.
Original language | English |
---|---|
Pages (from-to) | 357-364 |
Number of pages | 8 |
Journal | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Volume | 4 |
Issue number | 2/W5 |
DOIs | |
State | Published - 29 May 2019 |
Event | 4th ISPRS Geospatial Week 2019 - Enschede, Netherlands Duration: 10 Jun 2019 → 14 Jun 2019 |
Keywords
- Change Detection
- Local Deformation Analysis
- Volumetric Environment Representation