TY - JOUR
T1 - A defined range of guard cell calcium oscillation parameters encodes stomatal movements
AU - Allen, Gethyn J.
AU - Chu, Sarah P.
AU - Harrington, Carrie L.
AU - Schumacher, Karin
AU - Hoffmann, Thomas
AU - Tang, Yat Y.
AU - Grill, Erwin
AU - Schroeder, Julian I.
PY - 2001/6/28
Y1 - 2001/6/28
N2 - Oscillations in cytosolic calcium concentration ([Ca2+]cyt) are central regulators of signal transduction cascades1, although the roles of individual [Ca2+]cyt oscillation parameters in regulating downstream physiological responses remain largely unknown. In plants, guard cells integrate environmental and endogenous signals to regulate the aperture of stomatal pores2 and [Ca2+]cyt oscillations are a fundamental component of stomatal closure3,4. Here we systematically vary [Ca2+]cyt oscillation parameters in Arabidopsis guard cells using a 'calcium clamp'3,5-7 and show that [Ca2+]cyt controls stomatal closure by two mechanisms. Short-term 'calcium-reactive' closure occurred rapidly when [Ca2+]cyt was elevated, whereas the degree of long-term steady-state closure was 'calcium programmed' by [Ca2+]cyt oscillations within a defined range of frequency, transient number, duration and amplitude. Furthermore, in guard cells of the gca2 mutant8, [Ca2+]cyt oscillations induced by abscisic acid and extracellular calcium had increased frequencies and reduced transient duration, and steady-state stomatal closure was abolished. Experimentally imposing [Ca2+]cyt oscillations with parameters that elicited closure in the wild type restored long-term closure in gca2 stomata. These data show that a defined window of guard cell [Ca2+]cyt oscillation parameters programs changes in steady-state stomatal aperture.
AB - Oscillations in cytosolic calcium concentration ([Ca2+]cyt) are central regulators of signal transduction cascades1, although the roles of individual [Ca2+]cyt oscillation parameters in regulating downstream physiological responses remain largely unknown. In plants, guard cells integrate environmental and endogenous signals to regulate the aperture of stomatal pores2 and [Ca2+]cyt oscillations are a fundamental component of stomatal closure3,4. Here we systematically vary [Ca2+]cyt oscillation parameters in Arabidopsis guard cells using a 'calcium clamp'3,5-7 and show that [Ca2+]cyt controls stomatal closure by two mechanisms. Short-term 'calcium-reactive' closure occurred rapidly when [Ca2+]cyt was elevated, whereas the degree of long-term steady-state closure was 'calcium programmed' by [Ca2+]cyt oscillations within a defined range of frequency, transient number, duration and amplitude. Furthermore, in guard cells of the gca2 mutant8, [Ca2+]cyt oscillations induced by abscisic acid and extracellular calcium had increased frequencies and reduced transient duration, and steady-state stomatal closure was abolished. Experimentally imposing [Ca2+]cyt oscillations with parameters that elicited closure in the wild type restored long-term closure in gca2 stomata. These data show that a defined window of guard cell [Ca2+]cyt oscillation parameters programs changes in steady-state stomatal aperture.
UR - http://www.scopus.com/inward/record.url?scp=0035963337&partnerID=8YFLogxK
U2 - 10.1038/35082575
DO - 10.1038/35082575
M3 - Article
C2 - 11429606
AN - SCOPUS:0035963337
SN - 0028-0836
VL - 411
SP - 1053
EP - 1057
JO - Nature
JF - Nature
IS - 6841
ER -