A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction

Jo Schlemper, Jose Caballero, Joseph V. Hajnal, Anthony N. Price, Daniel Rueckert

Research output: Contribution to journalArticlepeer-review

917 Scopus citations

Abstract

Inspired by recent advances in deep learning, we propose a framework for reconstructing dynamic sequences of 2-D cardiac magnetic resonance (MR) images from undersampled data using a deep cascade of convolutional neural networks (CNNs) to accelerate the data acquisition process. In particular, we address the case where data are acquired using aggressive Cartesian undersampling. First, we show that when each 2-D image frame is reconstructed independently, the proposed method outperforms state-of-the-art 2-D compressed sensing approaches, such as dictionary learning-based MR image reconstruction, in terms of reconstruction error and reconstruction speed. Second, when reconstructing the frames of the sequences jointly, we demonstrate that CNNs can learn spatio-temporal correlations efficiently by combining convolution and data sharing approaches. We show that the proposed method consistently outperforms state-of-the-art methods and is capable of preserving anatomical structure more faithfully up to 11-fold undersampling. Moreover, reconstruction is very fast: each complete dynamic sequence can be reconstructed in less than 10 s and, for the 2-D case, each image frame can be reconstructed in 23 ms, enabling real-time applications.

Original languageEnglish
Article number8067520
Pages (from-to)491-503
Number of pages13
JournalIEEE Transactions on Medical Imaging
Volume37
Issue number2
DOIs
StatePublished - Feb 2018
Externally publishedYes

Keywords

  • Deep learning
  • compressed sensing
  • convolutional neural network
  • dynamic magnetic resonance imaging
  • image reconstruction

Fingerprint

Dive into the research topics of 'A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction'. Together they form a unique fingerprint.

Cite this