TY - GEN
T1 - A comparison of braking strategies for elastic joint robots
AU - Mansfeld, Nico
AU - Haddadin, Sami
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/6/29
Y1 - 2015/6/29
N2 - It has recently been shown that intrinsically elastic robots are capable of outperforming rigid robots in terms of peak velocity by making systematic use of energy storage and release. Certainly, high link side velocities are beneficial for performance, however, they also increase the probability of self damage or human injury in case of a collision. To ensure the physical integrity of both human and robot, it is therefore crucial to avoid potentially dangerous collisions and react in a compliant manner if unwanted contact has occurred or may occur unforeseeable. In this paper, we consider the most intuitive collision anticipation and pre-reaction scheme, namely stopping an elastic robot, if possible in minimum time. For 1-DOF elastic joints with limited elastic deflection we extend existing model-based and model-free controllers and compare their performance. Furthermore, we analyze the braking trajectory that is achieved with the different strategies. The 1-DOF solution is extended to the double pendulum case, where we show that feasible estimates for maximum and final position can be obtained at the very first instant of braking.
AB - It has recently been shown that intrinsically elastic robots are capable of outperforming rigid robots in terms of peak velocity by making systematic use of energy storage and release. Certainly, high link side velocities are beneficial for performance, however, they also increase the probability of self damage or human injury in case of a collision. To ensure the physical integrity of both human and robot, it is therefore crucial to avoid potentially dangerous collisions and react in a compliant manner if unwanted contact has occurred or may occur unforeseeable. In this paper, we consider the most intuitive collision anticipation and pre-reaction scheme, namely stopping an elastic robot, if possible in minimum time. For 1-DOF elastic joints with limited elastic deflection we extend existing model-based and model-free controllers and compare their performance. Furthermore, we analyze the braking trajectory that is achieved with the different strategies. The 1-DOF solution is extended to the double pendulum case, where we show that feasible estimates for maximum and final position can be obtained at the very first instant of braking.
UR - http://www.scopus.com/inward/record.url?scp=84938268383&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2015.7139268
DO - 10.1109/ICRA.2015.7139268
M3 - Conference contribution
AN - SCOPUS:84938268383
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 789
EP - 796
BT - 2015 IEEE International Conference on Robotics and Automation, ICRA 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Y2 - 26 May 2015 through 30 May 2015
ER -