A Coarse-fine Mesh Approach for Improved Solution of 3-D Inverse Problems in Unbounded Media

Ahmet Aydogan, Emre Kilic, Mehmet Mert Taygur, Thomas F. Eibert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A coarse-fine mesh approach is proposed to enhance the inverse scattering method for a three-dimensional problem. The problem is decomposed into exterior and interior problems to reduce the computational cost by invoking the equivalence principle. The exterior radiation problem is formulated by a boundary integral equation which enables to estimate the unknown surface current densities. The estimated current densities form the boundary conditions of the interior problem to extract the dielectric profile. The interior problem is formulated by the finite element technique and solved by the Gauss-Newton method. The associated surfaces and volumes are respectively discretized by triangular and tetrahedral meshes in the decomposed problems. The interior problem is solved with increasingly finer meshes and restricted iteration numbers for the coarser meshes. The exterior problem is solved for each mesh to form the boundary conditions with the associated discretization while the extracted profile in the previous step is used as the initial solution in the interior problem.

Original languageEnglish
Title of host publication14th European Conference on Antennas and Propagation, EuCAP 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9788831299008
DOIs
StatePublished - Mar 2020
Event14th European Conference on Antennas and Propagation, EuCAP 2020 - Copenhagen, Denmark
Duration: 15 Mar 202020 Mar 2020

Publication series

Name14th European Conference on Antennas and Propagation, EuCAP 2020

Conference

Conference14th European Conference on Antennas and Propagation, EuCAP 2020
Country/TerritoryDenmark
CityCopenhagen
Period15/03/2020/03/20

Keywords

  • boundary integral equation
  • finite element method
  • inverse scattering problems
  • mesh refinement.

Fingerprint

Dive into the research topics of 'A Coarse-fine Mesh Approach for Improved Solution of 3-D Inverse Problems in Unbounded Media'. Together they form a unique fingerprint.

Cite this