A clean, bright, and versatile source of neutron decay products

D. Dubbers, H. Abele, S. Baeßler, B. Märkisch, M. Schumann, T. Soldner, O. Zimmer

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

We present a case study on a new type of beam station for the measurement of angular correlations in the β-decay of free neutrons. This beam station, called proton and electron radiation channel (PERC), is a cold-neutron guide that delivers at its open end, instead of neutrons, a beam of electrons and protons from neutron decays that take place far inside the guide. These charged neutron-decay products are magnetically guided to the end of the neutron guide, where they are separated from the cold-neutron beam. In this way, a general-purpose source of neutron decay products is obtained which can be operated as a user facility for a variety of different experiments in neutron decay correlation spectroscopy that may be installed at this beam station. The angular distribution of the emitted charged particles depends on the magnetic field configuration and can be chosen freely, according to the need of the experiment being carried out. A gain in phase space density of several orders of magnitude can be achieved with PERC, as compared to existing neutron decay spectrometers. Detailed calculations show that the spectra and angular distributions of the emerging electrons and protons will be distortion- and background-free on the level of 10-4, more than 10 times better than that achieved today.

Original languageEnglish
Pages (from-to)238-247
Number of pages10
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume596
Issue number2
DOIs
StatePublished - 1 Nov 2008
Externally publishedYes

Keywords

  • Cold neutrons
  • Neutron guide
  • Weak interaction
  • β-decay

Fingerprint

Dive into the research topics of 'A clean, bright, and versatile source of neutron decay products'. Together they form a unique fingerprint.

Cite this