TY - JOUR
T1 - A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes
AU - Liang, Suzhe
AU - Cheng, Ya Jun
AU - Zhu, Jin
AU - Xia, Yonggao
AU - Müller-Buschbaum, Peter
N1 - Publisher Copyright:
© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Since the commercialization of lithium-ion batteries (LIBs) in the early 1990s, tin (Sn), antimony (Sb), and germanium (Ge)-based anodes have attracted considerable research interest as promising candidates for next-generation LIBs due to their high theoretical capacities, suitable operating voltages, and natural abundance. Additionally, the awareness of limited global lithium sources promoted the renaissance of sodium-ion batteries (SIBs) in recent years. Sn, Sb, and Ge can electrochemically alloy with sodium and are regarded as promising anode candidates for high-performance SIBs. However, these alloying/dealloying anodes suffer severe volume expansion during lithiation or sodiation processes, which is one of the biggest obstacles toward practical applications. In order to solve this problem, several strategies are developed including reducing the absolute size of particles, creating interior void space, and introducing buffer media. After more than two decades' efforts, the electrochemical performance of Sn, Sb, and Ge-based anodes is significantly improved. Considerable studies about Sn, Sb, and Ge-based anodes are summarized in a chronicle perspective and the brief development histories of the three anodes are outlined. With this unique review, light will be shed on the future trends of the studies on the Sn, Sb, and Ge-based anodes for advanced rechargeable batteries.
AB - Since the commercialization of lithium-ion batteries (LIBs) in the early 1990s, tin (Sn), antimony (Sb), and germanium (Ge)-based anodes have attracted considerable research interest as promising candidates for next-generation LIBs due to their high theoretical capacities, suitable operating voltages, and natural abundance. Additionally, the awareness of limited global lithium sources promoted the renaissance of sodium-ion batteries (SIBs) in recent years. Sn, Sb, and Ge can electrochemically alloy with sodium and are regarded as promising anode candidates for high-performance SIBs. However, these alloying/dealloying anodes suffer severe volume expansion during lithiation or sodiation processes, which is one of the biggest obstacles toward practical applications. In order to solve this problem, several strategies are developed including reducing the absolute size of particles, creating interior void space, and introducing buffer media. After more than two decades' efforts, the electrochemical performance of Sn, Sb, and Ge-based anodes is significantly improved. Considerable studies about Sn, Sb, and Ge-based anodes are summarized in a chronicle perspective and the brief development histories of the three anodes are outlined. With this unique review, light will be shed on the future trends of the studies on the Sn, Sb, and Ge-based anodes for advanced rechargeable batteries.
KW - antimony
KW - germanium
KW - lithium-ion batteries
KW - nonsilicon anodes
KW - sodium-ion batteries
KW - tin
UR - http://www.scopus.com/inward/record.url?scp=85084457865&partnerID=8YFLogxK
U2 - 10.1002/smtd.202000218
DO - 10.1002/smtd.202000218
M3 - Review article
AN - SCOPUS:85084457865
SN - 2366-9608
VL - 4
JO - Small Methods
JF - Small Methods
IS - 8
M1 - 2000218
ER -