A 3D simulation system for hip joint replacement planning

Christian Dick, J. Georgii, R. Burgkart, R. Westermann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

We present a tool for hip joint replacement planning that allows the surgeon to rank the long-term stability of an implant, and we show the application of this tool in a clinical routine setting. The tool allows the surgeon to predict the load transmission of an implant to the patient-specific bone. It is used to select of a set of available implants the one that most closely replicates the physiological stress state in order to avoid stress shielding. Advanced simulation technology is combined with 3D visualization options to provide quick and intuitive understanding of the generated results. Interactive feedback rates and intuitive control mechanisms facilitate the finding of an optimal implant shape with respect to the patient's specific anatomy. By restricting to a predetermined implant position, which is in accordance with the selected position in a real surgery, the surgeon can quickly analyze a number of different implants under varying load conditions.

Original languageEnglish
Title of host publicationWorld Congress on Medical Physics and Biomedical Engineering
Subtitle of host publicationImage Processing, Biosignal Processing, Modelling and Simulation, Biomechanics
PublisherSpringer Verlag
Pages363-366
Number of pages4
Edition4
ISBN (Print)9783642038815
DOIs
StatePublished - 2009
EventWorld Congress on Medical Physics and Biomedical Engineering: Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics - Munich, Germany
Duration: 7 Sep 200912 Sep 2009

Publication series

NameIFMBE Proceedings
Number4
Volume25
ISSN (Print)1680-0737

Conference

ConferenceWorld Congress on Medical Physics and Biomedical Engineering: Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics
Country/TerritoryGermany
CityMunich
Period7/09/0912/09/09

Keywords

  • Computational steering
  • Finite elements
  • Implant planning
  • Orthopedics
  • Stress visualization

Fingerprint

Dive into the research topics of 'A 3D simulation system for hip joint replacement planning'. Together they form a unique fingerprint.

Cite this