A 3D Deep Residual Convolutional Neural Network for Differential Diagnosis of Parkinsonian Syndromes on 18F-FDG PET Images

Yu Zhao, Ping Wu, Jian Wang, Hongwei Li, Nassir Navab, Igor Yakushev, Wolfgang Weber, Markus Schwaiger, Sung Cheng Huang, Paul Cumming, Axel Rominger, Chuantao Zuo, Kuangyu Shi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Scopus citations

Abstract

Idiopathic Parkinsons disease and atypical parkinsonian syndromes have similar symptoms at early disease stages, which makes the early differential diagnosis difficult. Positron emission tomography with 18F-FDG shows the ability to assess early neuronal dysfunction of neurodegenerative diseases and is well established for clinical use. In the past decades, machine learning methods have been widely used for the differential diagnosis of parkinsonism based on metabolic patterns. Unlike these conventional machine learning methods relying on hand-crafted features, the deep convolutional neural networks, which have achieved significant success in medical applications recently, have the advantage of learning salient feature representations automatically and effectively. This advantage may offer more appropriate invisible features extracted from data for the enhancement of the diagnosis accuracy. Therefore, this paper develops a 3D deep convolutional neural network on 18F-FDG PET images for the automated early diagnosis. Furthermore, we depicted in saliency maps the decision mechanism of the deep learning method to assist the physiological interpretation of deep learning performance. The proposed method was evaluated on a dataset with 920 patients. In addition to improving the accuracy in the differential diagnosis of parkinsonism compared to state-of-the-art approaches, the deep learning methods also discovered saliency features in a number of critical regions (e.g., midbrain), which are widely accepted as characteristic pathological regions for movement disorders but were ignored in the conventional analysis of FDG PET images.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3531-3534
Number of pages4
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 23 Jul 201927 Jul 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period23/07/1927/07/19

Fingerprint

Dive into the research topics of 'A 3D Deep Residual Convolutional Neural Network for Differential Diagnosis of Parkinsonian Syndromes on 18F-FDG PET Images'. Together they form a unique fingerprint.

Cite this