A (1 + ϵ)-approximation for Unsplittable Flow on a Path in fixed-parameter running time

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Unsplittable Flow on a Path (UFP) is a well-studied problem. It arises in many different settings such as bandwidth allocation, scheduling, and caching. We are given a path with capacities on the edges and a set of tasks, each of them is described by a start and an end vertex and a demand. The goal is to select as many tasks as possible such that the demand of the selected tasks using each edge does not exceed the capacity of this edge. The problem admits a QPTAS and the best known polynomial time result is a (2+ϵ)-approximation. As we prove in this paper, the problem is intractable for fixed-parameter algorithms since it is W[1]-hard. A PTAS seems difficult to construct. However, we show that if we combine the paradigms of approximation algorithms and fixed-parameter tractability we can break the mentioned boundaries. We show that on instances with |OPT| = κ we can compute a (1+ϵ)-approximation in time 2O(κ log κ) nOϵ(1) log umax (where umax is the maximum edge capacity). To obtain this algorithm we develop new insights for UFP and enrich a recent dynamic programming framework for the problem. Our results yield a PTAS for (unweighted) UFP instances where |OPT| is at most O(log n/log log n) and they imply that the problem does not admit an EPTAS, unless W[1] = FPT.

Original languageEnglish
Title of host publication44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
EditorsAnca Muscholl, Piotr Indyk, Fabian Kuhn, Ioannis Chatzigiannakis
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770415
DOIs
StatePublished - 1 Jul 2017
Externally publishedYes
Event44th International Colloquium on Automata, Languages, and Programming, ICALP 2017 - Warsaw, Poland
Duration: 10 Jul 201714 Jul 2017

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume80
ISSN (Print)1868-8969

Conference

Conference44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
Country/TerritoryPoland
CityWarsaw
Period10/07/1714/07/17

Keywords

  • Approximation algorithms
  • Combinatorial optimization
  • Fixed-parameter algorithms
  • Unsplittable Flow on a Path

Fingerprint

Dive into the research topics of 'A (1 + ϵ)-approximation for Unsplittable Flow on a Path in fixed-parameter running time'. Together they form a unique fingerprint.

Cite this