@inproceedings{f050deb0e87f4cacac251fbf55e2ed55,
title = "3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation",
abstract = "Model architectures have been dramatically increasing in size, improving performance at the cost of resource requirements. In this paper we propose 3DQ, a ternary quantization method, applied for the first time to 3D Fully Convolutional Neural Networks, enabling 16x model compression while maintaining performance on par with full precision models. We extensively evaluate 3DQ on two datasets for the challenging task of whole brain segmentation. Additionally, we showcase the ability of our method to generalize on two common 3D architectures, namely 3D U-Net and V-Net. Outperforming a variety of baselines, the proposed method is capable of compressing large 3D models to a few MBytes, alleviating the storage needs in space-critical applications.",
keywords = "Deep Learning, Quantization, Segmentation, Volumetric",
author = "Magdalini Paschali and Stefano Gasperini and Roy, {Abhijit Guha} and Fang, {Michael Y.S.} and Nassir Navab",
note = "Publisher Copyright: {\textcopyright} 2019, Springer Nature Switzerland AG.; 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 ; Conference date: 13-10-2019 Through 17-10-2019",
year = "2019",
doi = "10.1007/978-3-030-32248-9_49",
language = "English",
isbn = "9783030322472",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "438--446",
editor = "Dinggang Shen and Pew-Thian Yap and Tianming Liu and Peters, {Terry M.} and Ali Khan and Staib, {Lawrence H.} and Caroline Essert and Sean Zhou",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings",
}