TY - GEN
T1 - 3D in-vivo imaging of GFP-expressing T-cells in Mice with non-contact Fluorescence Molecular Tomography
AU - Garofalakis, Anikitos
AU - Meyer, Heiko
AU - Zacharakis, Giannis
AU - Mamalaki, Clio
AU - Papamatheakis, Joseph
AU - Ntziachristos, Vasilis
AU - Economou, Eleftherios N.
AU - Ripoll, J.
PY - 2006
Y1 - 2006
N2 - Optical tomography has been proposed as a promising technique for probing deep in tissue with many medical applications. Recently, the adaptation of fluorescent probes by the radiologists, gave rise to a new imaging tool in the area of molecular imaging. Optical tomography can, provide three-dimensional images of fluorescent concentrations inside living systems of sizes in the order of many cm. Our optical tomographer was based on a technique which is called Fluorescence Molecular Tomography (FMT) and can quantify fluorescent signals in mice. The imaging procedure is performed in a non-contact geometry so that living subjects of arbitrary shapes can be imaged with no fibers attached to them. We have developed a way to reconstruct the 3D surface of the subject and we use theoretical models to account for the propagation of the emerging signal in the free space. The system consists of a rotating sample holder and a CCD camera in combination with a laser-scanning device. An Argon-ion laser is used as the source and different filters are used for the detection of various fluorophores or fluorescing proteins. So far, we have observed of the distribution of GFP expressing T-lymphocytes in-vivo for the study of the function of the immune system in a murine model. Then we investigated the performance of the FMT setup to quantify the different amounts of migrated cells in the different organs by comparing our results with the FACS measurements. Further experiments included the measurement of the variations of the T cell's concentration in-vivo, over time.
AB - Optical tomography has been proposed as a promising technique for probing deep in tissue with many medical applications. Recently, the adaptation of fluorescent probes by the radiologists, gave rise to a new imaging tool in the area of molecular imaging. Optical tomography can, provide three-dimensional images of fluorescent concentrations inside living systems of sizes in the order of many cm. Our optical tomographer was based on a technique which is called Fluorescence Molecular Tomography (FMT) and can quantify fluorescent signals in mice. The imaging procedure is performed in a non-contact geometry so that living subjects of arbitrary shapes can be imaged with no fibers attached to them. We have developed a way to reconstruct the 3D surface of the subject and we use theoretical models to account for the propagation of the emerging signal in the free space. The system consists of a rotating sample holder and a CCD camera in combination with a laser-scanning device. An Argon-ion laser is used as the source and different filters are used for the detection of various fluorophores or fluorescing proteins. So far, we have observed of the distribution of GFP expressing T-lymphocytes in-vivo for the study of the function of the immune system in a murine model. Then we investigated the performance of the FMT setup to quantify the different amounts of migrated cells in the different organs by comparing our results with the FACS measurements. Further experiments included the measurement of the variations of the T cell's concentration in-vivo, over time.
KW - GFP expression
KW - Molecular imaging
KW - Optical tomography
KW - T-cell function
UR - http://www.scopus.com/inward/record.url?scp=33745337915&partnerID=8YFLogxK
U2 - 10.1117/12.657380
DO - 10.1117/12.657380
M3 - Conference contribution
AN - SCOPUS:33745337915
SN - 0819461865
SN - 9780819461865
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2006
T2 - Medical Imaging 2006: Physiology, Function, and Structure from Medical Images
Y2 - 12 February 2006 through 14 February 2006
ER -