β-amyloid monomer scavenging by an anticalin protein prevents neuronal hyperactivity in mouse models of Alzheimer’s Disease

Benedikt Zott, Lea Nästle, Christine Grienberger, Felix Unger, Manuel M. Knauer, Christian Wolf, Aylin Keskin-Dargin, Anna Feuerbach, Marc Aurel Busche, Arne Skerra, Arthur Konnerth

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer’s disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis. Our results suggest that the sole targeting of Aβ monomers is sufficient for the hyperactivity-suppressing effect of the Aβ-anticalin at early disease stages. Biochemical and neurophysiological analyses indicate that the Aβ-anticalin-dependent depletion of naturally secreted Aβ monomers interrupts their aggregation to neurotoxic oligomers and, thereby, reverses early neuronal and synaptic dysfunctions. Thus, our results suggest that Aβ monomer scavenging plays a key role in the repair of neuronal function at early stages of AD.

Original languageEnglish
Article number5819
JournalNature Communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

Fingerprint

Dive into the research topics of 'β-amyloid monomer scavenging by an anticalin protein prevents neuronal hyperactivity in mouse models of Alzheimer’s Disease'. Together they form a unique fingerprint.

Cite this