Über direkt integrierbare Kurven und strenge Böschungskurven im ℝn sowie geschlossene verallgemeinerte Hyperkreise

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

A curve in Euclidean space ℝn is called "directly integrable", if it can be explicitly calculated from the curvatures in a specified way. A necessary and sufficient condition for a curve to be directly integrable is that all its curvatures are real multiples of a single real function. Directly integrable curves in an odd-dimensional space ℝn (n=2q+1) can be interpreted as generalized helices. In the case of even-dimensional space ℝn (n=2p), we give a simple necessary and sufficient condition for a directly integrable curve to be closed.

Original languageGerman
Pages (from-to)273-284
Number of pages12
JournalManuscripta Mathematica
Volume42
Issue number2-3
DOIs
StatePublished - Jun 1983

Cite this