Spin injection, spin transport and controllable ferromagnetism in transition metal doped ZnO

Project: Research

Project Details

Description

The use of electron and hole spins for future semiconductor devices is in the focus of current research. Key prerequisites for the development of novel device concepts for spin electronics and spin optoelectronics are the realization of an effective injection of spin-polarized charge carriers, as well as the thorough understanding of the transport, manipulation and detection of the spin degree of freedom. The present proposal aims at the study of ZnO-based material systems and the investigation of their spin related properties using electrical and optical techniques. ZnO-based material systems are particularly promising as ZnO can be integrated with half-metallic ferromagnetic oxides in all-oxide epitaxial heterostructures. The key objectives this project include (i) the fabrication of epitaxial ZnO thin films and heterostructures as well as [ZnO/ferromagnet]n digital alloys tailored to the needs of spin (opto)electronic devices, (ii) the study of the spin lifetime and spin coherence length in ZnO by optical pump & probe experiments, (iii) the optical study of electrical spin injection and spin transport in ferromagnet/ZnO heterostructures, and (iv) the investigation of all-electrical spin injection and spin transport in high quality epitaxial ZnO thin films.

StatusFinished
Effective start/end date1/01/0731/12/14

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.