Filter
Conference contribution

Search results

  • 2024

    Non-parametric Representation Learning with Kernels

    Esser, P., Fleissner, M. & Ghoshdastidar, D., 25 Mar 2024, Technical Tracks 14. Wooldridge, M., Dy, J. & Natarajan, S. (eds.). 11 ed. Association for the Advancement of Artificial Intelligence, p. 11910-11918 9 p. (Proceedings of the AAAI Conference on Artificial Intelligence; vol. 38, no. 11).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2022

    Causal Forecasting: Generalization Bounds for Autoregressive Models

    Vankadara, L. C., Faller, P. M., Hardt, M., Minorics, L., Ghoshdastidar, D. & Janzing, D., 2022, Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022. Association For Uncertainty in Artificial Intelligence (AUAI), p. 2002-2012 11 p. (Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Scopus citations
  • Interpolation and Regularization for Causal Learning

    Vankadara, L. C., Rendsburg, L., von Luxburg, U. & Ghoshdastidar, D., 2022, Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022. Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K. & Oh, A. (eds.). Neural information processing systems foundation, (Advances in Neural Information Processing Systems; vol. 35).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2021

    Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks

    Esser, P. M., Vankadara, L. C. & Ghoshdastidar, D., 2021, Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021. Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Wortman Vaughan, J. (eds.). Neural information processing systems foundation, p. 27043-27056 14 p. (Advances in Neural Information Processing Systems; vol. 32).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    8 Scopus citations
  • 2016

    Mixture modeling with compact support distributions for unsupervised learning

    Dukkipati, A., Ghoshdastidar, D. & Krishnan, J., 31 Oct 2016, 2016 International Joint Conference on Neural Networks, IJCNN 2016. Institute of Electrical and Electronics Engineers Inc., p. 2706-2713 8 p. 7727539. (Proceedings of the International Joint Conference on Neural Networks; vol. 2016-October).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    5 Scopus citations
  • 2015

    A provable generalized tensor spectral method for uniform hypergraph partitioning

    Ghoshdastidar, D. & Dukkipati, A., 2015, 32nd International Conference on Machine Learning, ICML 2015. Bach, F. & Blei, D. (eds.). International Machine Learning Society (IMLS), p. 400-409 10 p. (32nd International Conference on Machine Learning, ICML 2015; vol. 1).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    36 Scopus citations
  • Spectral clustering using multilinear SVD: Analysis, approximations and applications

    Ghoshdastidar, D. & Dukkipati, A., 1 Jun 2015, Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015. AI Access Foundation, p. 2610-2616 7 p. (Proceedings of the National Conference on Artificial Intelligence; vol. 4).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    17 Scopus citations
  • 2014

    Spectral clustering with Jensen-type kernels and their multi-point extensions

    Ghoshdastidar, D., Dukkipati, A., Adsul, A. P. & Vijayan, A. S., 24 Sep 2014, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, p. 1472-1477 6 p. 6909587. (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    2 Scopus citations
  • 2013

    On power-law kernels, corresponding Reproducing Kernel Hilbert Space and applications

    Ghoshdastidar, D. & Dukkipati, A., 2013, Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013. p. 365-371 7 p. (Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Scopus citations
  • 2012

    Q-Gaussian based Smoothed Functional algorithms for stochastic optimization

    Ghoshdastidar, D., Dukkipati, A. & Bhatnagar, S., 2012, 2012 IEEE International Symposium on Information Theory Proceedings, ISIT 2012. p. 1059-1063 5 p. 6283013. (IEEE International Symposium on Information Theory - Proceedings).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    8 Scopus citations