Zero-Shot Noise2Noise: Efficient Image Denoising without any Data

Youssef Mansour, Reinhard Heckel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

19 Zitate (Scopus)

Abstract

Recently, self-supervised neural networks have shown excellent image denoising performance. How-ever, current dataset free methods are either computationally expensive, require a noise model, or have inad-equate image quality. In this work we show that a simple 2-layer network, without any training data or knowledge of the noise distribution, can enable high-quality image denoising at low computational cost. Our approach is motivated by Noise2Noise and Neighbor2Neighbor and works well for denoising pixel-wise independent noise. Our experiments on artificial, real-world cam-era, and microscope noise show that our method termed ZS-N2N (Zero Shot Noise2Noise) often outperforms ex-isting dataset-free methods at a reduced cost, making it suitable for use cases with scarce data availability and limited compute.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten14018-14027
Seitenumfang10
ISBN (elektronisch)9798350301298
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Kanada
Dauer: 18 Juni 202322 Juni 2023

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2023-June
ISSN (Print)1063-6919

Konferenz

Konferenz2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Land/GebietKanada
OrtVancouver
Zeitraum18/06/2322/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Zero-Shot Noise2Noise: Efficient Image Denoising without any Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren