Wrapping Cycles in Delaunay Complexes: Bridging Persistent Homology and Discrete Morse Theory

Ulrich Bauer, Fabian Roll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We study the connection between discrete Morse theory and persistent homology in the context of shape reconstruction methods. Specifically, we consider the construction of Wrap complexes, introduced by Edelsbrunner as a subcomplex of the Delaunay complex, and the construction of lexicographic optimal homologous cycles, also considered by Cohen–Steiner, Lieutier, and Vuillamy in a similar setting. We show that for any cycle in a Delaunay complex for a given radius parameter, the lexicographically optimal homologous cycle is supported on the Wrap complex for the same parameter, thereby establishing a close connection between the two methods. We obtain this result by establishing a fundamental connection between reduction of cycles in the computation of persistent homology and gradient flows in the algebraic generalization of discrete Morse theory.

OriginalspracheEnglisch
Titel40th International Symposium on Computational Geometry, SoCG 2024
Redakteure/-innenWolfgang Mulzer, Jeff M. Phillips
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (elektronisch)9783959773164
DOIs
PublikationsstatusVeröffentlicht - Juni 2024
Veranstaltung40th International Symposium on Computational Geometry, SoCG 2024 - Athens, Griechenland
Dauer: 11 Juni 202414 Juni 2024

Publikationsreihe

NameLeibniz International Proceedings in Informatics, LIPIcs
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISSN (Print)1868-8969

Konferenz

Konferenz40th International Symposium on Computational Geometry, SoCG 2024
Land/GebietGriechenland
OrtAthens
Zeitraum11/06/2414/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Wrapping Cycles in Delaunay Complexes: Bridging Persistent Homology and Discrete Morse Theory“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren