Workflow analysis and surgical phase recognition in minimally invasive surgery

Oliver Weede, Frank Dittrich, Heinz Worn, Brian Jensen, Alois Knoll, Dirk Wilhelm, Michael Kranzfelder, Armin Schneider, Hubertus Feussner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

26 Zitate (Scopus)

Abstract

In this paper, a new approach is described to recognize the phases of a single-port sigma resection intraoperatively, based on the position signal of the surgical instruments, the endoscopic video and an audio signal, signaling coagulations. Approaches for detecting the coagulation sounds, as well as the instruments visible in the endoscopic video using a bag of words model are detailed. The intervention phases are regarded as classes of a naive Bayes classifier. Features that differentiate intervention phases are examined. The naive Bayes classifier is extended by a dynamic feature, which includes the order of the intervention phases and their duration. First results show that in 93.2% the recognized phases are classified as true positive.

OriginalspracheEnglisch
Titel2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012 - Conference Digest
Seiten1068-1074
Seitenumfang7
DOIs
PublikationsstatusVeröffentlicht - 2012
Veranstaltung2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012 - Guangzhou, China
Dauer: 11 Dez. 201214 Dez. 2012

Publikationsreihe

Name2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012 - Conference Digest

Konferenz

Konferenz2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012
Land/GebietChina
OrtGuangzhou
Zeitraum11/12/1214/12/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Workflow analysis and surgical phase recognition in minimally invasive surgery“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren