Whom to Trust? Elective Learning for Distributed Gaussian Process Regression

Zewen Yang, Xiaobing Dai, Akshat Dubey, Sandra Hirche, Georges Hattab

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

6 Zitate (Scopus)

Abstract

This paper introduces an innovative approach to enhance distributed cooperative learning using Gaussian process (GP) regression in multi-agent systems (MASs). The key contribution of this work is the development of an elective learning algorithm, namely prior-aware elective distributed GP (Pri-GP), which empowers agents with the capability to selectively request predictions from neighboring agents based on their trustworthiness. The proposed Pri-GP effectively improves individual prediction accuracy, especially in cases where the prior knowledge of an agent is incorrect. Moreover, it eliminates the need for computationally intensive variance calculations for determining aggregation weights in distributed GP. Furthermore, we establish a prediction error bound within the Pri-GP framework, ensuring the reliability of predictions, which is regarded as a crucial property in safety-critical MAS applications.

OriginalspracheEnglisch
Seiten (von - bis)2020-2028
Seitenumfang9
FachzeitschriftProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
Jahrgang2024-May
PublikationsstatusVeröffentlicht - 2024
Veranstaltung23rd International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024 - Auckland, Neuseeland
Dauer: 6 Mai 202410 Mai 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Whom to Trust? Elective Learning for Distributed Gaussian Process Regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren